Review the basics of discrete math and probability before enhancing your probability skills and learning how to interpret data with tools such as the central limit theorem, confidence intervals and more. Complete short weekly mathematical assignments.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Statistics for Data Science Essentials
Ce cours fait partie de Spécialisation AI and Machine Learning Essentials with Python
Instructeurs : Chris Callison-Burch
Inclus avec
Ce que vous apprendrez
Comprehensively review probability and understand its role as a building block of data science.
Apply the central limit theorem, confidence intervals and the method of maximum likelihood to solving data science problems.
Compétences que vous acquerrez
- Catégorie : Probability And Statistics
- Catégorie : Mathematics
- Catégorie : Confidence Intervals
- Catégorie : Simple Random Sample
- Catégorie : Point Estimation
Détails à connaître
Ajouter à votre profil LinkedIn
16 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 4 modules dans ce cours
In the first week of the course, we’ll introduce you to a broad definition of data science and go over some of its main building blocks. To prepare, we'll spend some time reviewing discrete math fundamentals. By the end of the week, we will solve our first data science task using random sampling.
Inclus
8 vidéos1 lecture4 devoirs
The second week of our course is devoted to probability: since probability is the main language used by almost every data science concept, we will commit some time to deepening our understanding of it. By the end of the week, you will have far more tools in your probability toolkit, which will serve you throughout your AI and machine learning journey.
Inclus
6 vidéos4 devoirs
In this week, we will build up our general framework of statistical estimation, taking from several of the concepts we have discussed and more that we will continue to add this week. We will start by going over the sample mean, and we will analyze how good this is as an estimator. We will then explore the Central Limit Theorem, one of the most effective and widely-used tools in statistics and data science. We will also continue some probability review.
Inclus
8 vidéos4 devoirs
Now that we have learned the important machinery of the Central Limit Theorem, we are ready to learn about confidence intervals this week. Confidence intervals are the main quantities to characterize error bars in almost any area of data science and machine learning. After going through confidence intervals and some examples, we will also explore a more general perspective on estimation: point estimation.
Inclus
7 vidéos1 lecture4 devoirs
Offert par
Recommandé si vous êtes intéressé(e) par Probability and Statistics
University of Pennsylvania
University of Pennsylvania
Scrimba
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.