Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.

Johns Hopkins University

Wrangling Data in the Tidyverse

Carrie Wright, PhD
Shannon Ellis, PhD
Stephanie Hicks, PhD

Instructeurs : Carrie Wright, PhD

2 103 déjà inscrits

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
4.5

(31 avis)

14 heures pour terminer
3 semaines à 4 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
4.5

(31 avis)

14 heures pour terminer
3 semaines à 4 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Ce que vous apprendrez

  • Apply Tidyverse functions to transform non-tidy data to tidy data

  • Conduct basic exploratory data analysis

  • Conduct analyses of text data

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Évaluations

7 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Emplacement réservé

Élaborez votre expertise du sujet

Ce cours fait partie de la Spécialisation Tidyverse Skills for Data Science in R
Lorsque vous vous inscrivez à ce cours, vous êtes également inscrit(e) à cette Spécialisation.
  • Apprenez de nouveaux concepts auprès d'experts du secteur
  • Acquérez une compréhension de base d'un sujet ou d'un outil
  • Développez des compétences professionnelles avec des projets pratiques
  • Obtenez un certificat professionnel partageable
Emplacement réservé
Emplacement réservé

Obtenez un certificat professionnel

Ajoutez cette qualification à votre profil LinkedIn ou à votre CV

Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Emplacement réservé

Il y a 6 modules dans ce cours

Data never arrive in the condition that you need them in order to do effective data analysis. Data need to be re-shaped, re-arranged, and re-formatted, so that they can be visualized or be inputted into a machine learning algorithm. This module addresses the problem of wrangling your data so that you can bring them under control and analyze them effectively. The key goal in data wrangling is transforming non-tidy data into tidy data.

Inclus

19 lectures2 devoirs

In R, categorical data are handled as factors. By definition, categorical data are limited in that they have a set number of possible values they can take. For example, there are 12 months in a calendar year. In a month variable, each observation is limited to taking one of these twelve values. Thus, with a limited number of possible values, month is a categorical variable. Categorical data, which will be referred to as factors for the rest of this lesson, are regularly found in data. Learning how to work with this type of variable effectively will be incredibly helpful.

Inclus

14 lectures2 devoirs

Working with text data is increasingly common in data science projects. Text manipulation is often needed to clean up messy datasets and to create numerical measurements out of text input. In addition, often the text themselves are the data and this module covers tools to extract information from the text.

Inclus

13 lectures2 devoirs

The goal of an exploratory analysis is to examine, or explore the data and find relationships that weren’t previously known. Exploratory analyses explore how different measures might be related to each other but do not confirm that relationship as causal, i.e., one variable causing another. You’ve probably heard the phrase “Correlation does not imply causation,” and exploratory analyses lie at the root of this saying. Just because you observe a relationship between two variables during exploratory analysis, it does not mean that one necessarily causes the other.

Inclus

2 lectures

Now we will demonstrate how to import data using our case study examples. When working through the steps of the case studies, you can use either RStudio on your own computer or Coursera lab spaces provided for each case study.

Inclus

11 lectures2 laboratoires non notés

In this project, you will practice data exploration and data wrangling with the tidyverse using consumer complaint data from the Consumer Financial Protection Bureau (CFPB).

Inclus

1 lecture1 devoir

Instructeurs

Évaluations de l’enseignant
4.6 (9 évaluations)
Carrie Wright, PhD
Johns Hopkins University
7 Cours7 913 apprenants
Shannon Ellis, PhD
Johns Hopkins University
5 Cours6 055 apprenants
Stephanie Hicks, PhD
Johns Hopkins University
5 Cours6 055 apprenants

Offert par

Recommandé si vous êtes intéressé(e) par Data Analysis

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’

Avis des étudiants

Affichage de 3 sur 31

4.5

31 avis

  • 5 stars

    68,75 %

  • 4 stars

    18,75 %

  • 3 stars

    9,37 %

  • 2 stars

    3,12 %

  • 1 star

    0 %

AN
5

Révisé le 18 avr. 2022

LV
5

Révisé le 24 avr. 2021

Emplacement réservé

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions