In the final course from the Machine Learning for Trading specialization, you will be introduced to reinforcement learning (RL) and the benefits of using reinforcement learning in trading strategies. You will learn how RL has been integrated with neural networks and review LSTMs and how they can be applied to time series data. By the end of the course, you will be able to build trading strategies using reinforcement learning, differentiate between actor-based policies and value-based policies, and incorporate RL into a momentum trading strategy.
Reinforcement Learning for Trading Strategies
Ce cours fait partie de Spécialisation Machine Learning for Trading
Instructeur : Jack Farmer
18 212 déjà inscrits
Inclus avec
(231 avis)
Expérience recommandée
Ce que vous apprendrez
Understand the structure and techniques used in reinforcement learning (RL) strategies.
Understand the benefits of using RL vs. other learning methods.
Describe the steps required to develop and test an RL trading strategy.
Describe the methods used to optimize an RL trading strategy.
Compétences que vous acquerrez
- Catégorie : Reinforcement Learning Model Development
- Catégorie : Reinforcement Learning Trading Algorithm Optimization
- Catégorie : Reinforcement Learning Trading Strategy Development
- Catégorie : Reinforcement Learning Trading Algo Development
Détails à connaître
Ajouter à votre profil LinkedIn
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 3 modules dans ce cours
In this module, reinforcement learning is introduced at a high level. The history and evolution of reinforcement learning is presented, including key concepts like value and policy iteration. Also, the benefits and examples of using reinforcement learning in trading strategies is described. We also introduce LSTM and AutoML as additional tools in your toolkit to use in implementing trading strategies.
Inclus
10 vidéos1 lecture1 élément d'application
In the previous module, reinforcement learning was discussed before neural networks were introduced. In this module, we look at how reinforcement learning has been integrated with neural networks. We also look at LSTMs and how they can be applied to time series data.
Inclus
9 vidéos2 éléments d'application
In this module we discuss the practical steps required to create a reinforcement learning trading system. Also, we introduce AutoML, a powerful service on Google Cloud Platform for training machine learning models with minimal coding.
Inclus
10 vidéos1 élément d'application
Instructeur
Recommandé si vous êtes intéressé(e) par Machine Learning
Sungkyunkwan University
University of Illinois Urbana-Champaign
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Avis des étudiants
Affichage de 3 sur 231
231 avis
- 5 stars
34,63 %
- 4 stars
22,94 %
- 3 stars
18,18 %
- 2 stars
7,79 %
- 1 star
16,45 %
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.