Chevron Left
Back to Data Science Methodology

Learner Reviews & Feedback for Data Science Methodology by IBM

4.6
stars
20,435 ratings

About the Course

If there is a shortcut to becoming a Data Scientist, then learning to think and work like a successful Data Scientist is it. In this course, you will learn and then apply this methodology that you can use to tackle any Data Science scenario. You’ll explore two notable data science methodologies, Foundational Data Science Methodology, and the six-stage CRISP-DM data science methodology, and learn how to apply these data science methodologies. Most established data scientists follow these or similar methodologies for solving data science problems. Begin by learning about forming the business/research problem Learn how data scientists obtain, prepare, and analyze data. Discover how applying data science methodology practices helps ensure that the data used for problem-solving is relevant and properly manipulated to address the question. Next, learn about building the data model, deploying that model, data storytelling, and obtaining feedback You’ll think like a data scientist and develop your data science methodology skills using a real-world inspired scenario through progressive labs hosted within Jupyter Notebooks and using Python....

Top reviews

AG

May 13, 2019

This is a proper course which will make you to understand each and every stage of Data science methodology. Lectures are well enough to make you think as a data scientist. Thank you fr this course :)

JM

Feb 26, 2020

Very informative step-by-step guide of how to create a data science project. Course presents concepts in an engaging way and the quizzes and assignments helped in understanding the overall material.

Filter by:

2401 - 2425 of 2,575 Reviews for Data Science Methodology

By David N B

•

May 24, 2019

Very little assistance from Moderators

By kamal b

•

Dec 22, 2022

The tutor needs to be more involving.

By Tushar M

•

Jan 24, 2020

the course content requires an update

By Deepratna A

•

Jun 22, 2019

Could have made it more interesting

By Thomas M

•

Oct 17, 2019

Not great quality of video content

By ABHIJEET B

•

Jun 3, 2019

CHF case study was the worst part

By Ali R ( R

•

Oct 3, 2018

The case study was hard to follow

By Ramakrishna B

•

Jun 10, 2019

More explanation would be great.

By Glenda m

•

Mar 25, 2020

Falta mas ejemplos descriptivos

By sairam p

•

Apr 11, 2019

concentrated largely on theory.

By Anup U

•

Jul 19, 2020

it should be more descriptive

By usha y

•

Sep 18, 2018

very nice course knowledgeble

By Lawrence L

•

Jul 11, 2023

Too many narrative exercises

By Arushi

•

Apr 11, 2022

Its very very theoritical.

By SANDHI J

•

Jun 28, 2021

Should be more interactive

By Salvatore P

•

Oct 17, 2021

too much simplicistic.

By Igor L

•

Oct 2, 2019

Too basic and too easy

By Ar R H

•

May 16, 2020

The journey was well

By José M P A

•

Jan 3, 2019

A little boring...

By Richard B

•

Feb 3, 2021

good start.

By George Z

•

Jun 16, 2019

Very boring

By Rohit G

•

Apr 30, 2018

Nice course

By Max W

•

Nov 10, 2018

bit boring

By Roxana C

•

Jan 10, 2022

This course was fairly disappointing. Apart from the actual steps of the methodology, it does not properly teach the concepts mentioned in the course. For instance, the ROC curve used in the case study: I actually understood how it works from the forum, because one of the admins was kind and has given a very professional and well explained answer. I wouldn't say this course is a waste of time, but I believe it addresses superficially most concepts. I am a firm believer in explaining only a couple of things and doing them very well. The labs are bridging some gaps, so extra points for that. The chosen case study is not thoroughly explained - it uses methods that we are not given any context for and only the very obvious elements are explained. The parts addressing the case study need a serious revision. If you are not following the Data Science Specialization, I would recommend you find a better course on Data Science Methodology - this course is not it.

On the plus side, I did like the final assignment: yes, it is theoretical, yet it helps you really revise all that you've learned in the course.

By Oliver K

•

Oct 7, 2024

Several errors throughout the course. 1. Module 2 - default Jupyter cell output does not show Cuisine column mislabeling and inconsistency as is stated in the text. 2. Module 3 - This question is barely english. "For predictive models, a test data set, which is similar to but independent of the training set, is used to determine how well the model predicts outcomes—using a training or test. A test data set happens during which stage in Foundational Data Science Methodology?" 3. Module 3 - "Which of the following statements describes how data scientists refine the model after the initial deployment and feedback stages?" Apparently the correct answer is "By incorporating information about participation and possibly refining with detailed pharmaceutical data." Note that the question does not refer to the case study but asks generally about Data Science Methodology, but the answer talks about pharmaceutical data...