Chevron Left
Back to Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization

Learner Reviews & Feedback for Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization by DeepLearning.AI

4.9
stars
63,175 ratings

About the Course

In the second course of the Deep Learning Specialization, you will open the deep learning black box to understand the processes that drive performance and generate good results systematically. By the end, you will learn the best practices to train and develop test sets and analyze bias/variance for building deep learning applications; be able to use standard neural network techniques such as initialization, L2 and dropout regularization, hyperparameter tuning, batch normalization, and gradient checking; implement and apply a variety of optimization algorithms, such as mini-batch gradient descent, Momentum, RMSprop and Adam, and check for their convergence; and implement a neural network in TensorFlow. The Deep Learning Specialization is our foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. It provides a pathway for you to gain the knowledge and skills to apply machine learning to your work, level up your technical career, and take the definitive step in the world of AI....

Top reviews

AS

Apr 18, 2020

Very good course to give you deep insight about how to enhance your algorithm and neural network and improve its accuracy. Also teaches you Tensorflow. Highly recommend especially after the 1st course

XG

Oct 30, 2017

Thank you Andrew!! I know start to use Tensorflow, however, this tool is not well for a research goal. Maybe, pytorch could be considered in the future!! And let us know how to use pytorch in Windows.

Filter by:

6126 - 6150 of 7,253 Reviews for Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization

By Martin P

•

Dec 23, 2017

The course is well organized and I've learnt quite a lot related math knowledge. The only thing I felt need to improve is that the assignment was too easy and I can easily pass even though I didn't fully understand all the concept and details. Hope we can make it hard and more opportunities for the learner to make mistake and correct in order to learn more.

Thanks

Martin

By Supriya S

•

Sep 27, 2017

Good coverage of the practical aspects of Neural networks. Happy to be introduced to the latest research on the topic. Not the course's fault but there seems to be reuse of the same variable names in different papers. Wish the course introduced some consistency.

The introduction to TensorFlow was useful. However, wish there was more coverage / exercises for this topic.

By Ido S

•

Nov 26, 2017

Andrew Ng's courses are a real delight - he's a natural teacher that explains well and can get students excited about a subject. In this class there were some problems with the last exercise (the TensorFlow tutorial) - it was too simple and yet cryptic, with some unaddressed errors and a lot of loose ends (thus only 4 stars - all his other classes are definitely 5)

By Sebastián J C

•

Sep 15, 2020

Only detail is that programming exercises are way too simple, copy-paste kind of things. I could understand that being the case for the first, introductory course, but it would've been nice to have a little bit more of a challenge to get used to the programming implementation details. Also, it is outdated in the sense that you are using version 1 of TensorFlow.

By Shuai X

•

Dec 15, 2017

This course subsumes relevant contents in Stanford Machine Learning Course. Some useful addition to the Stanford Course are briefs on Gradient Descent With Momentum, RMSdrop and Adam as well as elementary practices on Tensorflow. People with basic knowledge of linear algebra can complete this course in a day (i.e. 10 hours) by skipping less important videos.

By Crawford F

•

Dec 7, 2020

The final lab is somewhat confusing in that the TensorFlow syntax is poorly explained and the results for the final module would be well served by noting what your first epoch should be as well as the 100th (I spent a long time trying to find non-existant bugs because I had misread the output of my model as epoch 100!!).

Other than that excellent as ever.

By Satyam k

•

Aug 18, 2020

This course provide very deep and good knowledge that how to increase speed of your neural network and how we do hyperparameter tunning. But one thing lags in this course is that it won't provide much knowledge about frameworks like Tensorflow and people face difficulty while doing programming exersice because tensorflow knowledge is not provide in depth

By Vishak A

•

May 14, 2020

I wish more of TensorFlow had been included in the course content. Aside of that major point, I wish the complex mathematical portions had been explained with more precision and codes like "X[0][0]" had been explained with more precision as well. But overall, I think it was hugely worth learning all the thoroughly taught concepts and I am very grateful.

By Chinmay h

•

May 8, 2020

Topics are explained very well. There may be a false sense of accomplishment coming after doing the assignments, which are pretty straightforward. I am going to add in personal tasks which might help me understand the topics more in depth. On a similar front, could you add in a video explaining what to do next. And I don't mean the next course in line.

By jim

•

Nov 8, 2017

gain quite a lot of insight into the deep neural network, the tunning, regularization and so on.

one remark on this course, we talked a lot about tunning processes in wk3. However, not much practical exercises on this part, e.g. we didn't try to implement the batch normalization ourselves and to incorporate batch normalization with other parameters etc.

By Aurangazeeb A K

•

Sep 30, 2019

Although I loved this course, I believe there are certain parts that could be broken down into even simpler intuitions. If such a change a possible, this course will be the best one out there. Anyway, I really enjoyed the course and it was a great learning experience. Tensorflow was introduced very finely and it aroused my curiousity to learn more.

By Manish M

•

Mar 22, 2020

Really informative course to learn about the various kinds of optimizations and the differences between the optimization techniques. Learnt how to tune the hyper parameters for effective training . Also got a chance to learn about mini-batches and the corresponding gradient descent and the difference between batch and mini-batch gradient descent.

By Alejandro F

•

Feb 3, 2020

Un curso muy bueno, el instructor tiene dominio del tema y sobre todo el final del curso es muy bueno en cuestión de poner en practica la teoría que al principio te explica. En ocasiones el instructor va un poco rápido en los términos teóricos y puede llegar a abrumarte. Creo quería ideal poner más ejemplos prácticos cada que explica un concepto.

By Yix L

•

Dec 20, 2019

Materials are good and Professor Andrew presents the course in the really understandable level, so I still learn a lot throughout the course even if I have taken similar mooc courses on other platforms. Programming Assignments are much easier than the fourth course (Convolutional NN), but it gives many inspiration to me. Great thanks to the team!

By Hans E

•

Feb 18, 2018

Great material, very clear and pleasant teaching, good software environment for the programming exercises. The exercises are a bit boring at times (cut and paste without much thinking) but maybe this is a quick way to memorize the material...

Some long known problems in the exercises should REALLY REALLY be addressed! (would have given 5 stars)

By Marco P

•

Apr 19, 2021

Great course! The labs were very useful in seeing the concepts applied in practice. Something that I think would help all the concepts and practice take hold even more would be a second lab session per week with much less guidance, where the student is required to come up with most of the algorithm themselves. Overall great and solid course!

By Guoqin M

•

Jun 29, 2018

Content is great! A good introduction to a lot of hyper-parameters in neural net. However, there are some bugs in the evaluation system of programming assignments. For example, the system does not recognize Pythons '-=' operation and gave me a fail, which I did not figure out until I saw the forum where people were having the same trouble.

By Lennart M C

•

Jan 14, 2022

Much better than the first course. Math is still quite shallow (simple and not going into too much detail), and programming assignments are still mostly one-liners with copy&paste. But the general techniques demonstrated throughout the course are very helpful, and the given intuition about why and how something works helps understanding.

By Malav A

•

May 4, 2020

The course was very good. Things were implemented and taught well and at the correct pace. However, while completing the exercise, we can never write the whole code, we have to only edit a few lines of codes. That's not bad for a beginner, but it would have been better if a little understanding about that part of code could be given too.

By Pedram A

•

Dec 1, 2021

Concepts are great and complex :) but the instructor is great at teaching complex things. The assignments weren't challenging or I can say they were too short and small for these lots of concepts: that's why I gave 4 stars. Materials In this module are not kinda continuous and that's why made this module difficult to teach and to learn.

By Michail V

•

Mar 5, 2024

Very interesting course, like all courses taught by Andrew Ng, who is an excellent teacher. The only thing I found strange was the TensorFlow introduction in the end. I think that it does not fit to the course topic. In addition to this, I found the introduction very restricted. But this is a tiny part of the overall very good course.

By Nikola J

•

May 19, 2018

Andrew is great at teaching. Quality of education is absolutely for 5 stars, but I am giving 4 because of technical difficulties with Jupiter notebook. Often happened that I wrote some code and it could not save, it just displayed error, so I had to copy code to my notepad and rerun the Jupiter notebook, and than copy the code back.

By Ozan G

•

Aug 9, 2020

I really like the content but I believe that it is about time the final assignment of this course is updated to Tensorflow 2. There is no point in enforcing learning outdated software... For the massive revenue that this course is generating, the minimal effort to update one Jupyter Notebook should not be too much of a burden...

By Usama B N

•

May 19, 2020

The course was a very focused approach towards introducing and familiarizing us with the importance of tuning hyperparameters and their impact on the performance. Although, I personally feel like the Tensorflow exercise could have been more detailed and could have used more explanation. I found that exercise somewhat confusing.

By Guoliang

•

Apr 3, 2020

The explanation is just as good as the previous course. The reason I give 4 star is that the notebook use TF version 1 instead of 2. Given syntax of 1 and 2 shows great difference, at least I believe so, it would be better that the notebook can be updated. For the rest of the course, very good!!! Suitable for beginners in DL.