How to Optimize a CompTIA A+ Resume
June 24, 2024
Article
This course is part of Sports Performance Analytics Specialization
Instructors: Wenche Wang
Instructor ratings
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
22,850 already enrolled
Included with
(185 reviews)
Recommended experience
Intermediate level
Learners should have some familiarity with Python before starting this course. We recommend the Python for Everybody Specialization.
(185 reviews)
Recommended experience
Intermediate level
Learners should have some familiarity with Python before starting this course. We recommend the Python for Everybody Specialization.
Use Python to analyze team performance in sports.
Become a producer of sports analytics rather than a consumer.
Add to your LinkedIn profile
13 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
This course provides an introduction to using Python to analyze team performance in sports. Learners will discover a variety of techniques that can be used to represent sports data and how to extract narratives based on these analytical techniques. The main focus of the introduction will be on the use of regression analysis to analyze team and player performance data, using examples drawn from the National Football League (NFL), the National Basketball Association (NBA), the National Hockey League (NHL), the English Premier LEague (EPL, soccer) and the Indian Premier League (IPL, cricket).
This course does not simply explain methods and techniques, it enables the learner to apply them to sports datasets of interest so that they can generate their own results, rather than relying on the data processing performed by others. As a consequence the learning will be empowered to explore their own ideas about sports team performance, test them out using the data, and so become a producer of sports analytics rather than a consumer. While the course materials have been developed using Python, code has also been produced to derive all of the results in R, for those who prefer that environment.
This week introduces a simple example of sports analytics in practice - the calculation of the Pythagorean expectation to model winning in team sports. This can also be used for the purposes of prediction. Examples are developed for five different sports leagues, Major League Baseball (MLB), the National Basketball Association (NBA), the National Hockey League (NHL), the English Premier League (EPL-soccer) and the Indian Premier League (IPL-cricket).
8 videos6 readings1 assignment7 ungraded labs
This week will use NBA data to introduce basic and important Python codes to conduct data cleaning and data preparation. This week also discusses summary and descriptive analyses with statistics and graphs to understand the distribution of data, the characteristics and pattern of variables as well as the relationship between two variables. At the end of this week, we will introduce correlation coefficients to summarize the linear relationship between two variables.
6 videos6 readings3 assignments5 ungraded labs
This module introduces some ways of representing data using examples from MLB, the NBA and Indian Premier League. MLB data is used to analyze the spatial distribution of different hits. NBA data is used to generate heatmaps to illustrate the different ways in which players contribute. IPL data is used to show how team performances can be compared graphically.
4 videos6 readings2 assignments5 ungraded labs
This week introduces the fundamentals of regression analysis. We will discuss how to perform regression analysis using Python and how to interpret regression output. We will use NHL data to estimate multiple regression models to identify the team level performance factors that affect the team's winning percentage. We will also use cricket data from the Indian Premier League to run regression analyses to examine whether player performance impacts player salary.
6 videos6 readings3 assignments4 ungraded labs
This module uses regression analysis to investigate the relationship between team salary spending and team performance in the NBA, NHL, EPL and IPL. The module explores different ways of defining the regression model, and how to interpret competing regression model results.
4 videos4 readings1 assignment5 ungraded labs
This week studies an interesting topic in sport, the hot hand. We will introduce the concept of hot hand and discuss the academic research that examines whether the hot hand is a phenomenon or a fallacy. We will demonstrate how to analytically test the hot hand using the NBA shot log data. We will test whether NBA players have hot hand by computing conditional probabilities and autocorrelation coefficients as well as performing regression analyses.
8 videos7 readings3 assignments5 ungraded labs
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
The mission of the University of Michigan is to serve the people of Michigan and the world through preeminence in creating, communicating, preserving and applying knowledge, art, and academic values, and in developing leaders and citizens who will challenge the present and enrich the future.
University of Michigan
Specialization
University of Michigan
Course
The State University of New York
Course
University of Michigan
Course
185 reviews
65.05%
24.19%
4.30%
2.68%
3.76%
Showing 3 of 185
Reviewed on Jul 25, 2024
O curso é incrível, e nas duas últimas semanas dificulta bastante. É necessário muito foco desde o início para que o processo de aprendizagem seja mais fluído.
Vale muito a pena fazer.
Reviewed on Mar 7, 2022
An excellent way to get hands-on experience exploring sports data in Python/R
Reviewed on Oct 25, 2023
Fantastic introduction to Python, engaging and I enjoyed that lots of different sports were discussed.
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.