Linear Regression vs. Logistic Regression: What You Need to Know
August 12, 2024
Article
Cultivate your career with expert-led programs, job-ready certificates, and 10,000 ways to grow. All for $25/month, billed annually. Save now
This course is part of Advanced Statistics for Data Science Specialization
Instructor: Brian Caffo, PhD
30,101 already enrolled
Included with
(187 reviews)
(187 reviews)
Add to your LinkedIn profile
7 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
Welcome to the Advanced Linear Models for Data Science Class 1: Least Squares. This class is an introduction to least squares from a linear algebraic and mathematical perspective. Before beginning the class make sure that you have the following:
- A basic understanding of linear algebra and multivariate calculus. - A basic understanding of statistics and regression models. - At least a little familiarity with proof based mathematics. - Basic knowledge of the R programming language. After taking this course, students will have a firm foundation in a linear algebraic treatment of regression modeling. This will greatly augment applied data scientists' general understanding of regression models.
We cover some basic matrix algebra results that we will need throughout the class. This includes some basic vector derivatives. In addition, we cover some some basic uses of matrices to create summary statistics from data. This includes calculating and subtracting means from observations (centering) as well as calculating the variance.
7 videos4 readings1 assignment
In this module, we cover the basics of regression through the origin and linear regression. Regression through the origin is an interesting case, as one can build up all of multivariate regression with it.
6 videos2 readings1 assignment
In this lecture, we focus on linear regression, the most standard technique for investigating unconfounded linear relationships.
8 videos2 readings1 assignment
We now move on to general least squares where an arbitrary full rank design matrix is fit to a vector outcome.
6 videos1 reading1 assignment
Here we give some canonical examples of linear models to relate them to techniques that you may already be using.
4 videos1 assignment
Here we give a very useful kind of linear model, that is decomposing a signal into a basis expansion.
6 videos2 assignments
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world.
Johns Hopkins University
Course
Illinois Tech
Build toward a degree
Course
Howard University
Course
Johns Hopkins University
Course
187 reviews
63.10%
25.13%
7.48%
3.20%
1.06%
Showing 3 of 187
Reviewed on Apr 29, 2020
The course is interesting; but is more theoretical in nature than applied.
Reviewed on Nov 6, 2017
Great, detailed walk-through of least squares. Linear Algebra is a must for this course. To follow the last part requires knowledge of matrix (eigen?)decomposition, which derailed me somewhat.
Reviewed on Sep 12, 2020
Excellent experience. I have learnt a lot in different aspect of linear models as well as the coding skills from this course. Thank you.
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Financial aid available,
Learn on your own time from top universities and businesses.
Already on Coursera?
Having trouble logging in? Learner help center
This site is protected by reCAPTCHA Enterprise and the Google Privacy Policy and Terms of Service apply.