What Does MVP Stand For? It’s Not What You Think.
October 7, 2024
Article
This course is part of Machine Learning Specialization
Instructors: Emily Fox
Instructor ratings
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
99,174 already enrolled
Included with
(2,359 reviews)
(2,359 reviews)
Add to your LinkedIn profile
15 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
Case Studies: Finding Similar Documents
A reader is interested in a specific news article and you want to find similar articles to recommend. What is the right notion of similarity? Moreover, what if there are millions of other documents? Each time you want to a retrieve a new document, do you need to search through all other documents? How do you group similar documents together? How do you discover new, emerging topics that the documents cover? In this third case study, finding similar documents, you will examine similarity-based algorithms for retrieval. In this course, you will also examine structured representations for describing the documents in the corpus, including clustering and mixed membership models, such as latent Dirichlet allocation (LDA). You will implement expectation maximization (EM) to learn the document clusterings, and see how to scale the methods using MapReduce. Learning Outcomes: By the end of this course, you will be able to: -Create a document retrieval system using k-nearest neighbors. -Identify various similarity metrics for text data. -Reduce computations in k-nearest neighbor search by using KD-trees. -Produce approximate nearest neighbors using locality sensitive hashing. -Compare and contrast supervised and unsupervised learning tasks. -Cluster documents by topic using k-means. -Describe how to parallelize k-means using MapReduce. -Examine probabilistic clustering approaches using mixtures models. -Fit a mixture of Gaussian model using expectation maximization (EM). -Perform mixed membership modeling using latent Dirichlet allocation (LDA). -Describe the steps of a Gibbs sampler and how to use its output to draw inferences. -Compare and contrast initialization techniques for non-convex optimization objectives. -Implement these techniques in Python.
Clustering and retrieval are some of the most high-impact machine learning tools out there. Retrieval is used in almost every applications and device we interact with, like in providing a set of products related to one a shopper is currently considering, or a list of people you might want to connect with on a social media platform. Clustering can be used to aid retrieval, but is a more broadly useful tool for automatically discovering structure in data, like uncovering groups of similar patients.<p>This introduction to the course provides you with an overview of the topics we will cover and the background knowledge and resources we assume you have.
4 videos5 readings
We start the course by considering a retrieval task of fetching a document similar to one someone is currently reading. We cast this problem as one of nearest neighbor search, which is a concept we have seen in the Foundations and Regression courses. However, here, you will take a deep dive into two critical components of the algorithms: the data representation and metric for measuring similarity between pairs of datapoints. You will examine the computational burden of the naive nearest neighbor search algorithm, and instead implement scalable alternatives using KD-trees for handling large datasets and locality sensitive hashing (LSH) for providing approximate nearest neighbors, even in high-dimensional spaces. You will explore all of these ideas on a Wikipedia dataset, comparing and contrasting the impact of the various choices you can make on the nearest neighbor results produced.
22 videos4 readings5 assignments
In clustering, our goal is to group the datapoints in our dataset into disjoint sets. Motivated by our document analysis case study, you will use clustering to discover thematic groups of articles by "topic". These topics are not provided in this unsupervised learning task; rather, the idea is to output such cluster labels that can be post-facto associated with known topics like "Science", "World News", etc. Even without such post-facto labels, you will examine how the clustering output can provide insights into the relationships between datapoints in the dataset. The first clustering algorithm you will implement is k-means, which is the most widely used clustering algorithm out there. To scale up k-means, you will learn about the general MapReduce framework for parallelizing and distributing computations, and then how the iterates of k-means can utilize this framework. You will show that k-means can provide an interpretable grouping of Wikipedia articles when appropriately tuned.
13 videos2 readings3 assignments
In k-means, observations are each hard-assigned to a single cluster, and these assignments are based just on the cluster centers, rather than also incorporating shape information. In our second module on clustering, you will perform probabilistic model-based clustering that provides (1) a more descriptive notion of a "cluster" and (2) accounts for uncertainty in assignments of datapoints to clusters via "soft assignments". You will explore and implement a broadly useful algorithm called expectation maximization (EM) for inferring these soft assignments, as well as the model parameters. To gain intuition, you will first consider a visually appealing image clustering task. You will then cluster Wikipedia articles, handling the high-dimensionality of the tf-idf document representation considered.
15 videos4 readings3 assignments
The clustering model inherently assumes that data divide into disjoint sets, e.g., documents by topic. But, often our data objects are better described via memberships in a collection of sets, e.g., multiple topics. In our fourth module, you will explore latent Dirichlet allocation (LDA) as an example of such a mixed membership model particularly useful in document analysis. You will interpret the output of LDA, and various ways the output can be utilized, like as a set of learned document features. The mixed membership modeling ideas you learn about through LDA for document analysis carry over to many other interesting models and applications, like social network models where people have multiple affiliations.<p>Throughout this module, we introduce aspects of Bayesian modeling and a Bayesian inference algorithm called Gibbs sampling. You will be able to implement a Gibbs sampler for LDA by the end of the module.
12 videos2 readings3 assignments
In the conclusion of the course, we will recap what we have covered. This represents both techniques specific to clustering and retrieval, as well as foundational machine learning concepts that are more broadly useful.<p>We provide a quick tour into an alternative clustering approach called hierarchical clustering, which you will experiment with on the Wikipedia dataset. Following this exploration, we discuss how clustering-type ideas can be applied in other areas like segmenting time series. We then briefly outline some important clustering and retrieval ideas that we did not cover in this course.<p> We conclude with an overview of what's in store for you in the rest of the specialization.
12 videos2 readings1 assignment
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
Founded in 1861, the University of Washington is one of the oldest state-supported institutions of higher education on the West Coast and is one of the preeminent research universities in the world.
Corporate Finance Institute
Course
Coursera Instructor Network
Course
SkillUp EdTech
Course
Course
2,359 reviews
74.39%
19.16%
4.70%
0.72%
1.01%
Showing 3 of 2359
Reviewed on Oct 10, 2016
The material covered in this course is immense and gives a deep understanding of several algorithms required to perform unsupervised learning tasks.
Reviewed on Feb 25, 2017
Good and deep dive into ML!Absolutely disappointed that the course was delayed and the promise to take it through Course 5 and Capstone Project didn't come through.Not at all happy with that!!
Reviewed on Jan 6, 2019
This was a really good course, It made me familiar with many tools and techniques used in ML. With this in hand I will be able to go out there and explore and understand things much better.
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work.
These cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
These cookies enable the website to provide enhanced functionality and personalization. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.