PM
Aug 18, 2019
The course was well designed and delivered by all the trainers with the help of case study and great examples.
The forums and discussions were really useful and helpful while doing the assignments.
SZ
Dec 19, 2016
Great course!
Emily and Carlos teach this class in a very interest way. They try to let student understand machine learning by some case study. That worked well on me. I like this course very much.
By Zhen W
•Jul 5, 2017
Good ~~~~
By Kevin C N
•Dec 10, 2016
Thanks!!!
By Oriol P
•Mar 30, 2016
Was nice!
By Sreemannarayana B
•Feb 23, 2016
Excellent
By Oumar D
•Feb 21, 2016
Efficient
By DEBASISH M
•Sep 21, 2020
Like it.
By John M
•Jul 4, 2018
Liked it
By Evan Y
•Dec 23, 2018
So good
By पं.अभिषेक प
•Jul 25, 2023
GOOD
By Venna S V
•Jan 20, 2022
GOOD
By VYSHNAVI P
•Dec 13, 2021
Good
By SHISHANTH R
•Sep 6, 2021
good
By Deleted A
•Aug 14, 2020
good
By YEDURADA J K
•Aug 10, 2020
nice
By Rohan B R
•Jun 24, 2020
nice
By vishwak
•Jun 21, 2020
cool
By Dr. A S M M R
•Jun 6, 2020
Good
By 楊傑綸
•Dec 29, 2015
Cool
By 王博
•Nov 13, 2015
nice
By Brijmohan S
•Mar 22, 2018
V
By Sofia P
•Mar 12, 2016
I did not have a lot of experience in machine learning, so this course was very good in the aspect of introducing people to machine learning concepts. Most of the times the material was very well explained, and I like the concept of the tutor writing on the screen at the same time they are presenting, personally it helps me more. Some of the quizzes were easy so you did not need a lot of preparation, some of them were more difficult or troublesome, like the quiz for Deep Learning. I also liked the graphlab module, I think that learning how to use it will help me with my own work.
However, as this course does not really go in depth in the algorithms themselves, I feel that after one month and a half I have a basic idea, but I haven't learned much about how to implement machine learning on my own even in basic things, while other courses have more or less the same time frame and are more dense in their material. In my opinion, this whole introductory course would just be just splitted and each of these intrductory weeks would be appended as the first week of the subsequent modules to come. Because anyways, after 4 months in the specialization, if somebody continues to the recommender systems module for example, he/she would have forgotten the basics of this so they would need to cover again the recommender systems week in this course. And from the other hand, if some introduction is again repeated in the subsequent modules, then why have this introductory course anyways?
Thanks.
By Denys G
•Jan 13, 2016
The biggest downside of the course is that instead of learning on open source machine learning modules (sklearn) the course offers Dato's GraphLab, a proprietary piece of software that requires paid licenses to operate.
To be clear, during the duration of the course students can use a student license that provides graphlab for free but this expires after a year. It seems like fine software but if you arent going to purchase a license after the class expires whats the point? Also, Graphlab is built on top of python2.7. If you are running python 3.0+ on your machine youll have to install a python 2.7 instance.
Otherwise the quality is solid. The philosophical approach the professors take is to give you a taste of a variety of machine learning models. The upside is that if you want to get a taste you can. The downside the course feels pretty shallow and then the next course in the specialization -- regression -- feels like a pretty stark contrast. In general it could be argued that this is a problem with all coursera courses. How do you modulate course difficulty when you could be targeting students who are somewhere between high school kids to computer scientists? So the course and the specialization tilts between very easy and very hard.
By Steven D
•Sep 11, 2016
The course is effectively a tutorial on how to use proprietary software to solve a range of machine learning problems.
I liked the fact that the course covered a wide range of problems quickly. There were however two issues that I did not like.
1) It is not well supported and given that the technology is proprietary, there are few other places that offer support (i.e. you can’t just look at problems and solutions on stackoverflow to get insight into the tech)
2) For a course labelled as “intermediate”, it presented very little detail. Most of the course was dedicated to explaining particular problems, the solution to which was inevitably “then you train this really clever, one-line algorithm we have written for you and you query it for insights”. I felt a little cheated by this approach to a subject which should be really fascinating.
While some of my concerns may be addressed in follow on courses, I am left with little insight into what really lies ahead. For example, is this really an “intermediate” course? What background do I really need? Will we ever get to the detail or will I always just be expected to call someone else’s brilliant algorithm and accept the result.
By Monika K
•May 1, 2016
It should be 5 stars based on content - though I have a feeling it's a bit dragged out to create as many courses as possible for the Speclialisation.
However, I think IPython isn't a great tool for this, especially as the requirement is Python 2.7 for GraphLab as it doesn't support Python 3 yet. Going backwards, I think. I also think ideally you would want to encourage people to write bigger chunks of code rather than get bogged down with word counting.
However, the main issue is that the assignments are really badly put together. It's actually hard to understand what the underlying requirements are at first read - from about Week 3 onwards. The concepts are easy to understand, it's the way they are worded and jumbled. I had to read them over and over again because there is a fair amount of jumping around and since there is filtering of the data, the order you carry out the tasks matter very much.
I was looking forward to this course and planned to take 3 but now I regret paying for this one and thinking about finding another one. I think the tool and the messiness of the assignment make this Specialisation not up to the task, sorry.
By Christina
•May 25, 2016
I think this course is a relatively well put together, gentle introduction to machine learning. It would be good for people with zero experience with ML, who might be overwhelmed by other ML courses (Ng, Abu-Mostafa) out there. This course would not be useful for anyone who has any previous knowledge of ML.
Many reviewers have taken issue with the software used. I actually liked the Dato libraries a lot, but I'd be uncomfortable using proprietary software for research. I thought it was friendly enough to be appropriate for this kind of intro class, and I really enjoy iPython notebooks for interactive teaching.
I rated this course a 3 because of the price for the full course. This part of the specialization should be free. It does not provide enough instruction, practice, or content for the cost. Multiple choice quizzes are used to grade the programming assignments, so there is no feedback from the instructors. These answers are not made available to students in the free tier, which flies in the face of open learning. I am disappointed in the recent push to monetize courses. Please don't pay for this one.