Your Guide to Business Analysis Tools for 2025
January 29, 2025
Article
Cultivate your career with expert-led programs, job-ready certificates, and 10,000 ways to grow. All for $25/month, billed annually. Save now
Instructor: Ricardo Pasquini
2,571 already enrolled
Included with
(24 reviews)
(24 reviews)
Explotar datos históricos, o de otras empresas o unidades de negocio para estimar el escenario esperado y escenarios de riesgo.
Utilizar modelos de regresión para incorporar información adicional a la explicación y predicción de la variable de interés a modelar.
Modelar y predecir series de tiempo.
Realizar mejores predicciones utilizando una gran cantidad de variables explicativas.
Add to your LinkedIn profile
5 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
Este es un curso de modelización cuantitativa pensado para su aplicación en el ámbito de finanzas corporativas. En este curso aprenderás cómo explotar de la mejor forma los datos que alimentan a los modelos financieros.
En la "era de los datos", cada vez más las organizaciones cuentan con información que pueden ser explotada para enriquecer la modelización financiera. Apoyándonos en métodos estadísticos y de modelización, en este curso aprenderás a proyectar variables de interés, a realizar predicciones, a medir y a evaluar la implicancia de riesgos. También aprenderás criterios para la toma decisiones, basadas en la evaluación de escenarios con incertidumbre. Aplicaremos herramientas básicas de análisis estadístico, métodos de regresión simple y multivariado, técnicas de series de temporales, y de predicción frente a una gran cantidad de variables explicativas, entre otras herramientas que estudiaremos con el foco en aplicaciones financieras. Implementaremos los modelos más simples en Excel, y ganaremos agilidad en estimaciones más complejas usando R. Este es el segundo curso de la serie de Finanzas Corporativas ofrecido por la Universidad Austral.
En este módulo introduciremos la proyección de una variable basándonos en la información disponible sobre esa variable. Analizaremos también cómo las proyecciones afectan nuestras decisiones financieras. Nos apoyaremos en los conceptos de proyección de un escenario esperado, la identificación de escenarios de riesgo, y en cuantificar sus probabilidades de ocurrencia. Utilizaremos para esto herramientas clásicas de la estadística frecuentista: los conceptos de escenario esperado, distribución de probabilidad, y el uso de percentiles.
6 videos9 readings1 assignment
En este módulo cubriremos cómo proyectar una variable incluyendo datos adicionales, aquellos que servirían para explicar o predecir el fenómeno de interés. Nos enfocaremos en modelos de regresión, uno de los métodos más utilizados para la modelización. Comenzaremos por introducir la versión simple, donde una sola variable es utilizada como base de la modelización. Luego, extenderemos el modelo para incluir múltiples variables. Introduciremos los cambios en la interpretación, y los problemas comunes que pueden surgir en la modelización.
12 videos6 readings1 assignment
En los módulos anteriores trabajamos con modelos donde la información temporal (i.e., cuándo ocurrió un evento) es irrelevante. En este módulo extendemos los modelos para acomodar a las Series de Tiempo, que son aquellos procesos en donde la secuencialidad de la información es relevante. Aplicaciones incluyen la proyección del Producto Bruto Interno de un país, la tasa de interés en un mercado, el precio de una acción, etc. Discutiremos formas de modelizar a las series de tiempo por sus principales componentes. Cubriremos también modelos específicos para modelar el componente de autocorrelación temporal. En este módulo también introduciremos al software R para modelar series de tiempo de una manera eficiente.
8 videos5 readings1 assignment
En este módulo nos enfocaremos en lo que llamaremos un enfoque predictivo de la modelización. Estos métodos buscan maximizar la capacidad predictiva aun cuando al hacerlo pierden la capacidad explicativa del fenómeno en cuestión. La prioridad del enfoque predictivo es hacer la mejor predicción posible, y para ello es fundamental evitar el sobreajuste de los datos. Aprenderemos a diagnosticar el sobreajuste e introduciremos a los modelos de regularización, un tipo de modelos que permiten limitar el sobreajuste de manera automatizada.
6 videos4 readings2 assignments
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
La Universidad Austral se propone servir a la sociedad a través de la búsqueda de la verdad, mediante el desarrollo y transmisión del conocimiento, la formación en las virtudes y la atención de cada persona según su destino trascendente, proponiendo un estilo de liderazgo intelectual, profesional, social y público.
Universidad Austral
Course
Universidad Nacional Autónoma de México
Specialization
Universidad de los Andes
Course
Universidad de los Andes
Course
24 reviews
62.50%
33.33%
0%
0%
4.16%
Showing 3 of 24
Reviewed on Oct 4, 2021
El curso estuvo diicil, pero aprendí muchas cosas.
Reviewed on May 8, 2023
Es muy clara la explicación para comprender los conceptos de Regresión y de Ajuste de Modelos.
Reviewed on Jan 29, 2023
reforse el conocimiento de excel y aprendi un poco de r
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Financial aid available,