JC
Jan 16, 2017
excellent course. Be prepared to learn a lot if you work hard and don't give up if you think it is hard, just continue thinking, and interact with other students and tutors + Google and Stackoverflow!
MR
Aug 13, 2020
recommended for all the 21st centuary students who might be intrested to play with data in future or some kind of work related to make predictions systemically must have good knowledge of this course
By Robert W S
•Nov 21, 2016
Great intro to machine learning. Several algorithms with some ideas on sampling and pre-processing techniques are covered. Adding a textbook as done with some of the other data science classes would help, but other resources are referenced.
By Sabawoon S
•Sep 14, 2017
Excellent course, very practical. Found the project challenging as preprocessing data required some knowledge of the limitation of the RandomForest method i.e. both train and test needs to have same classes of data with similar levels.
By Kalle H
•Jun 25, 2018
Nice course that tries to fit a lot of material into four weeks. Due to this, the material is not so deep, although pointers are given to where the student can find additional information related to each subject covered by the course.
By Kamran H
•Feb 18, 2016
Pretty good overview of how to build some types of machine learning models through the caret library in R, but not much in terms of the theoretical underpinnings or why one method is better than the other or where it is most suitable.
By Brynjólfur G J
•Sep 24, 2017
Some problems with current and old versions of packages and problems with using other packages on different operating systems. Though that did also help foster an independent research style which will help me in the future.
By Chonlatit P
•Oct 20, 2018
GREAT course! There are all base of machine learning field. The limitation is blur between basic and detail especially maths. This course, sometimes , show the maths that make you confuse if you're not familiar with them.
By Emily M
•Mar 12, 2018
This course gives an overview of a broad subject. My personal feeling is that there could have been some more indepth examples/case studies to demonstrate how to apply these methods and analyse /interpret the outcomes.
By Orest A
•Jan 22, 2018
It needs more mathematical detail. Otherwise is a fairly comprehensive class, and a great tutorial on the caret package. I recommend it, if you need to refresh concepts and get some practical exposure to caret.
By Max
•Feb 7, 2021
It is a nice introduction, but the course is not as good as the other ones from the specialization. Nonetheless, it is just right to get into ML, understand key concepts, applications, algorithms and practice.
By Bruce I K
•Oct 20, 2016
It's a great course but I hope you add a few things. The course about the machine learning algorithm is so basic. Please get deep into the machine learning algorithm. Then it would become the perfect course.
By Aashay M
•May 29, 2016
In my opinion this course is highly technical and demanding in nature compared with the others. The learning experience is good and coursera.org has given a opportunity for customization ! thank you Coursera
By Paul K
•Apr 8, 2017
Very good summary of strengths/weaknesses of various machine learning algorithms. This lecturer's style and production quality is much higher than in the previous two courses in the specialization series.
By Andres D C
•Jun 1, 2021
A well descriptive experience for this subject; really steps into how to handle information and how to extract info from them. You need to be prepared with Regression Models, it's the base of it.
By Erika G
•Jul 28, 2016
I learned a lot in this class. There are slight gaps from the depth of material covered in the lectures to the quizzes and assignment. If you're good at researching online, you'll be fine.
By haridas P
•Mar 13, 2021
This is a well thought about course which focuses on familiarizing the learner on the concepts of Machine Learning and develops a love in the learner towards predictive modeling. Thank you
By Jiarui Q
•Mar 27, 2019
It is still kind of hard for a learner to understand the methods. But it gives me a overall introduction of machine learning and I will have further learning in the future.
By Matthew C
•Dec 11, 2017
Lots of good material, but some things (like PCA) didn't receive enough coverage in the lectures. The quizzes also weren't great at testing the material in the lectures.
By Utkarsh Y
•Nov 17, 2016
Great course. Only missing piece is the working information / maths behind the models. But as the name suggests it teaches practical approach towards machine learning.
By Craig S
•Feb 12, 2018
Not as detailed as some others in the specialization which is a shame but good none the less. The videos go through the info quickly so be prepared to go back over.
By Roberto G
•May 20, 2017
Great as an introduction for someone with no practical experience. Lectures are too theoretical and lack some examples to translates the theory into practice
By Nicholas T
•Jul 3, 2020
Very good course. Fast paced and a lot of self study required to fully understand some of the nuances of the R (if you're not familiar with the language).
By Eric L
•Jun 2, 2016
Great course, very high paced with a lot of information. would have been great to add two more weeks and another project to use more machine learning
By Igor H
•Sep 10, 2016
Rather basic, nevertheless a good introduction to the topic of machine learning with R. Mostly concentrated on applications of the R caret package.
By Lee G
•Sep 22, 2017
A very good starter course on Machine Learning in R with great links to various resources that students and delve deeper into the various topics.
By Yashaswi P
•May 24, 2020
Good Course the covers a lot of practical aspects and relevant to the real world solution.
Good References and Learning Materails are available