Chevron Left
Back to Python and Statistics for Financial Analysis

Learner Reviews & Feedback for Python and Statistics for Financial Analysis by The Hong Kong University of Science and Technology

4.4
stars
4,287 ratings

About the Course

Course Overview: https://youtu.be/JgFV5qzAYno Python is now becoming the number 1 programming language for data science. Due to python’s simplicity and high readability, it is gaining its importance in the financial industry. The course combines both python coding and statistical concepts and applies into analyzing financial data, such as stock data. By the end of the course, you can achieve the following using python: - Import, pre-process, save and visualize financial data into pandas Dataframe - Manipulate the existing financial data by generating new variables using multiple columns - Recall and apply the important statistical concepts (random variable, frequency, distribution, population and sample, confidence interval, linear regression, etc. ) into financial contexts - Build a trading model using multiple linear regression model - Evaluate the performance of the trading model using different investment indicators Jupyter Notebook environment is configured in the course platform for practicing python coding without installing any client applications....

Top reviews

RH

Jan 4, 2024

It is an excellent course to apply statistic, probability and python methods in financial modelling. I would like that each section had resources to study statistics concepts related to the videos.

GR

Mar 28, 2022

Very useful introductury course into both python and statistic analysis wich allows you to create a simple trading strategy. It serves as a great first step but there is a long way to go still.

Filter by:

551 - 575 of 979 Reviews for Python and Statistics for Financial Analysis

By Abhishek k G

Jul 24, 2020

great

By Wang J

Oct 9, 2019

great

By Rushi K

Sep 5, 2024

good

By MATHAN T

Jul 26, 2024

good

By Sayak G

Mar 17, 2023

good

By kendrick B

Dec 4, 2022

Easy

By mohamed a

Aug 26, 2022

Good

By Tin C L

Jun 5, 2022

good

By SHIBAM C

May 4, 2022

GOOD

By Md Z

Sep 2, 2021

good

By Siying C

Aug 27, 2021

nice

By 刘一洋

Aug 22, 2021

good

By Amlan B

Jun 24, 2021

Good

By Sankhadip J

Jun 5, 2021

Good

By SUKHEN D

Feb 27, 2021

good

By Zhu, T

Jun 6, 2020

good

By Xiaobing C

Dec 22, 2019

good

By Saktheeswarasriram

Jul 26, 2024

kk

By Polad V

Dec 24, 2022

5

By Gleb V

Nov 28, 2021

The overall experience is good. Below I will describe main pros ans cons of the course.

To the benefits of this course I will attribute, firstly, its low entry threshold for beginners. Secondly, it was quite close to practice: methods of munging the data, visualizing the data, building simple trading signals with the help of Pandas library methods as well as evaluating the strategy with Sharpe Ratio and Maximum Drawdown coefficients will be very useful in real life and I hope will safe many hours of exploring technical issues in Stack Overflow and similar resources. Thirdly, the structure of the course was very intuitive: we had an overview of main statistical concepts before we needed to apply them to real data.

As to the drawbacks of the course, first of all, the overwiew of statistical concepts was too superficial. The listeners who don't have previous statistical, economic or engineering background will certainly have a lot of questions unanswered because they won't go to the proofs of the concepts and ideas presented. Secondly, though we've built trading strategies, they can not be applied in real life because we've not touched such topics as trading fees modelling and bid-ask spread modelling. Thirdly, I don't understand how the signals we have created may be technically applied in a trading environment as we didn't bother these questions.

To sum up, it was quite good introductionary course to the signal-based trading with the help of statistics. However, I think it should be further developed to cover more practical aspects and suggest different ways for listeners to improve their expertiese in the field of trading and quantitative finance, for example, by links to other courses in this sphere.

By Jitendra D S

Sep 11, 2020

Using short videos was a good way to keep things interesting. The course was broken up into very manageable sections so I never felt I had too much work to complete in order to progress to the next section (especially since I work long hours and do not have much free time). The videos, along with the subtitles at the bottom of the page, were clear and easy to understand. The exercises were a little disappointing in my opinion. I believe the best way to learn most programming language is to type out the code from scratch and test at every step as you go along. I understand that some sections of the code we used to the analysis were complex, so my suggestion is to only include those parts of the code in the exercises, and have the student type out the easy parts repeatedly. For example the from excel, print, head, tail and other easy code can be filled out by the students instead of already having it in place. This will really help nail down the syntax and nuances of the language. You can include a help button that shows the correct code if the students can't figure it out themselves. Overall I'd give this course a 8.5/10 since I was able to apply this knowledge easily to my work. Thank you, Coursera & Xuhu Wan!

Jitendra De Silva

By Zoran

Jan 3, 2021

Not for beginners, but very condensed and a good summary if you know these already.

The course contains very condensed information which combines: statistical inference methods, intermediate python language and evaluation methods of trading strategies.

I would not recommend it if you have not done at least two of three: a) Completed basic statistics course b) Completed a beginner to python programming course c) Understand the basics of trading, creating and evaluating trading strategies (sharpe ratios, overfitting etc).

For me it was a pleasure to see such information condensed, as I've refreshed my econometrics (ie statistical inference methods) knowledge, I can use the code to create my own variations of strategies and dig deeper to testing and training of trading models.

But overall I would struggle if I would be missing knowledge, as every single word from the professor has a very specific reason to be there. Every words matters and is used to create a solid line of logic.

English could be better, but I don't care about that. All was clear to me.

By Justin Y

Jun 21, 2021

Learned a lot, however, it gets complicated really quickly. My intention for this course was to learn more about how Python is used in business analysis as this is something I am planning to do for college. I feel that it would be greatly appreciated if even basic statistics tools would be expounded more on as I did not really know these and it took a toll on my progress in this course. I would also appreciate if the labs were more hands-on, meaning that we would be the ones to build the code and applying our understanding of the videos. Although in certain labs this is done, some of the labs would just let me run the code that was already pre-typed. I think that allowing students to apply their understanding would allow them to remember more the lessons provided by the course.

I learned a lot and I greatly appreciate Mr. Wan for creating this course as it will certainly help me in the future.

By Claudio H

Apr 21, 2020

A fine introduction to the use of statistical models for finance (stock trading), showing its implementation in Python. It is NOT a course in either Python or Statistics but shows what one should learn. Alas, it does not give any pointers as to where to go to delve deeper into the needed statistics (nor trading, for that matter). It contains a fair summary explanation of linear regression models, but the recipes for their evaluation are discussed way too briefly.As for Python, it uses 4 common important libraries and directs the student to the corresponding sites. It gives no explanations as to the kind of structures being manipulated. The Jupyter notebooks are well set-up for practice.

By Kushagra S

May 21, 2020

The course provides an overview of how to build a quantitative trading model. However, the instructor does not go into details while either introducing python functions to someone unfamiliar with the language or talking about statistical concepts. I could follow the code based on my background in other programming languages.I will be following up this course with other courses that go in depth on both the programming and statistics front.The Jupyter notebooks are quite helpful and I will be using them for future reference.3.5 would probably be a more honest rating of the course but I don't think the course could have taught the learner more given its length.