In-Demand Supply Chain Management Skills to Boost Your Resume in 2025
January 6, 2025
Article
This course is part of Data Analysis with Python Specialization
Instructor: Di Wu
Included with
Recommended experience
Intermediate level
Students should have taken the "Data Wrangling with Python" specialization or have the equivalent skillsets.
Recommended experience
Intermediate level
Students should have taken the "Data Wrangling with Python" specialization or have the equivalent skillsets.
Understand the principles and significance of regression analysis in supervised learning.
Implement cross-validation methods to assess model performance and optimize hyperparameters.
Comprehend ensemble methods (bagging, boosting, and stacking) and their role in enhancing regression model accuracy.
Add to your LinkedIn profile
6 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
The "Regression Analysis" course equips students with the fundamental concepts of one of the most important supervised learning methods, regression. Participants will explore various regression techniques and learn how to evaluate them effectively. Additionally, students will gain expertise in advanced topics, including polynomial regression, regularization techniques (Ridge, Lasso, and Elastic Net), cross-validation, and ensemble methods (bagging, boosting, and stacking). Through interactive tutorials and practical case studies, students will gain hands-on experience in applying regression analysis to real-world data scenarios.
By the end of this course, students will be able to: 1. Understand the principles and significance of regression analysis in supervised learning. 2. Grasp the concepts and applications of linear regression and its interpretation in real-world datasets. 3. Explore polynomial regression to capture nonlinear relationships between variables. 4. Apply regularization techniques (Ridge, Lasso, and Elastic Net) to prevent overfitting and improve model generalization. 5. Implement cross-validation methods to assess model performance and optimize hyperparameters. 6. Comprehend ensemble methods (bagging, boosting, and stacking) and their role in enhancing regression model accuracy. 7. Evaluate and compare the performance of different regression models using appropriate metrics. 8. Apply regression analysis techniques to real-world case studies, making data-driven decisions. Throughout the course, students will actively engage in tutorials and case studies, strengthening their regression analysis skills and gaining practical experience in applying regression techniques to diverse datasets. By achieving the learning objectives, participants will be well-equipped to excel in regression analysis tasks and make informed decisions using regression models.
This week provides an introduction to regression analysis as a powerful supervised learning method. You will delve into the concepts of linear regression, understanding its principles, assumptions, and practical applications.
1 video4 readings1 assignment1 discussion prompt
This week you will explore polynomial regression, an advanced technique used to capture nonlinear relationships between variables.
1 video2 readings1 assignment1 discussion prompt
This week focuses on regularization techniques, including Ridge, Lasso, and Elastic Net, which help prevent overfitting and improve the generalization of regression models.
1 video3 readings1 assignment1 discussion prompt
Throughout this week, you will explore evaluation metrics and cross-validation techniques to assess and optimize regression model performance.
1 video3 readings1 assignment1 discussion prompt
This week explores ensemble methods in regression analysis, including bagging and boosting, to combine multiple models for improved prediction accuracy.
1 video3 readings1 assignment1 discussion prompt
The final week focuses on a comprehensive case study where you will apply regression analysis to solve a real-world problem.
2 readings1 assignment1 discussion prompt
CU Boulder is a dynamic community of scholars and learners on one of the most spectacular college campuses in the country. As one of 34 U.S. public institutions in the prestigious Association of American Universities (AAU), we have a proud tradition of academic excellence, with five Nobel laureates and more than 50 members of prestigious academic academies.
Illinois Tech
Build toward a degree
Course
Course
Johns Hopkins University
Course
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Financial aid available,
Learn on your own time from top universities and businesses.
Already on Coursera?
Having trouble logging in? Learner help center
This site is protected by reCAPTCHA Enterprise and the Google Privacy Policy and Terms of Service apply.