Chevron Left
Back to Practical Machine Learning

Learner Reviews & Feedback for Practical Machine Learning by Johns Hopkins University

4.5
stars
3,246 ratings

About the Course

One of the most common tasks performed by data scientists and data analysts are prediction and machine learning. This course will cover the
basic components of building and applying prediction functions with an emphasis on practical applications. The course will provide basic
grounding in concepts such as training and tests sets, overfitting, and error rates. The course will also introduce a range of model based and
algorithmic machine learning methods including regression, classification trees, Naive Bayes, and random forests. The course will cover the
complete process of building prediction functions including data collection, feature creation, algorithms, and evaluation.
...

Top reviews

JC

Jan 16, 2017

excellent course. Be prepared to learn a lot if you work hard and don't give up if you think it is hard, just continue thinking, and interact with other students and tutors + Google and Stackoverflow!

MR

Aug 13, 2020

recommended for all the 21st centuary students who might be intrested to play with data in future or some kind of work related to make predictions systemically must have good knowledge of this course

Filter by:

51 - 75 of 617 Reviews for Practical Machine Learning

By Paula L

•

Dec 2, 2016

good course, but one who is serious about data science should view this course as a starting point since machine learning is a semester long course so I'd recommend follow up with machine learning course taught from Andrew Ng out of Stanford

By Bill K

•

Feb 10, 2016

Really good class. I think there were some small issues with the class project. Like all real world problems it was not entirely well specified and the data was a bit odd to use for a prediction exercise because it was time series data.

By Stephanie D

•

May 21, 2017

This was definitely a challenging course. I learned a lot about building and testing prediction algorithms. The course also helped me overcome the feeling of intimidation by providing excellent examples and a hands-on final assignment.

By Yusuf E

•

Oct 17, 2018

It would have been nice if there was an introduction to deep learning. Also, linear methods are discussed at length again which is not really necessary. Otherwise, great course to get you started on machine learning applications in R.

By Athanasios S

•

Aug 9, 2018

Great class! I wish you would do a little more explanation about what methods are best for which scenarios. If you did in fact explain that and it went over my head or I missed it, I apologize. Great class that I learned a lot from.

By Dave H

•

Feb 23, 2019

This was one of my favorite courses in the specialization as it was so easy to understand and follow. I think the basis I was given has really made me want to delve deeper into the topic and apply it to my career. Thank you!!!

By Pei-Pei L

•

Jul 26, 2017

This course covers a lot of information in a short time, but you'll feel very proud of yourself when you finish it! It made me feel much more comfortable with writing machine learning programs, and am ready for the next topic!

By Kristin A

•

Jan 9, 2018

Good intro to a topic that has a lot of power and a rich body of knowledge behind it. You can only scratch the surface in a four-week course, but I have been exposed to quite a range of tools in Practical Machine Learning.

By Samuel H

•

Feb 17, 2016

This was a very good introduction to machine learning and how to use machine learning packages in R. It would have been better if the class had been longer than four weeks, but I learned a lot for the length of the course.

By Mohammad A

•

Jan 17, 2019

Wonderful course and instructor, it was the best in the specialization courses so far.

One note is that for most of the methods the explanation was too much precise and short and needed to reinforce it by extra material

By manny d

•

Sep 9, 2017

Best course i have ever taken on Machine Learning! Excellent presentation and excellent reference sources. Machine Learning is not that hard as I thought it would be..please make more practical courses like this one.

By ARVIND S

•

May 23, 2020

It 's a great machine learning course for beginners as well as students with experience. The quizzes and peer assignments are invaluable and if done with a purpose can augment knowledge of the subject immensely.

By Joseph

•

Dec 13, 2016

Awesome course. Jeff Leek does a truly amazing job at explaining very complicated concepts thoroughly and quickly. I'm surprised we went through as much material as we did. Out of the 9, this is one my favorites.

By Adam R

•

Nov 11, 2018

Best course in the data science series. It is practical, so if you are looking for something theoretical this will not be the course for you. Also good introduction the methods for model testing and validation.

By Massimo M

•

Apr 21, 2018

Very interesting course, materials are explained in an engaging manner. I would have loved to have a few more exercises to practice, but overall a good course to understand the most important concepts of ML.

By Ben H

•

Oct 7, 2019

Really nice introduction to machine learning in R. You wouldn't want to pack more than this in 4 weeks. Would be interested to see if this course adopts the recipes / parsnip / tidymodels in the future.

By Anuj P

•

Feb 21, 2019

This is the most interesting of all the courses in this specialization. Sometimes the content covered can be overwhelming. But the end result in the form of project assignment is worth all the efforts.

By Jerome C

•

Jan 17, 2017

excellent course. Be prepared to learn a lot if you work hard and don't give up if you think it is hard, just continue thinking, and interact with other students and tutors + Google and Stackoverflow!

By Vivek G

•

Nov 9, 2020

Great introduction to ML.

Demands focus and hard work.

Forces one to review earlier courses - Statistical Inference, regression models, EDA.

Leaves lots of appetite for additional knowledge and skills.

By Muhammad R

•

Aug 14, 2020

recommended for all the 21st centuary students who might be intrested to play with data in future or some kind of work related to make predictions systemically must have good knowledge of this course

By Angel D

•

Mar 1, 2017

Issues of every stage of the construction of learning machine model, as well as issues with several different machine learning methods are well and in fine yet very understandable detail explained.

By Aram M

•

Aug 30, 2017

Highly recommend this course. It makes you read a lot, do lot's of practical exercises. The final project is a must do. After finishing this course you can start playing with kaggle data sets.

By Rafael M

•

Nov 13, 2018

Este es un muy buen curso, aprendes lo básico para poder entrar en el mundo del machine learning y te da la oportunidad de desarrollar modelos realmente útiles.

Recomendado, definitivamente.

By Jared P

•

Jun 24, 2017

Awesome course. Would recommend it, but only to those who have a bit of stats and R background. This definitely helped me get a solid enough understanding of using R for machine learning.

By Simeon E

•

Aug 2, 2017

Great Course. No so easy, as I expected, but, definitely, it worth all the time I've spent on it. Be careful: it requires a lot of self-studying and don't forget to read the Course Forum.