Chevron Left
Back to Applied Data Science Capstone

Learner Reviews & Feedback for Applied Data Science Capstone by IBM

4.7
stars
7,165 ratings

About the Course

This is the final course in the IBM Data Science Professional Certificate as well as the Applied Data Science with Python Specialization. This capstone project course will give you the chance to practice the work that data scientists do in real life when working with datasets. In this course you will assume the role of a Data Scientist working for a startup intending to compete with SpaceX, and in the process follow the Data Science methodology involving data collection, data wrangling, exploratory data analysis, data visualization, model development, model evaluation, and reporting your results to stakeholders. You will be tasked with predicting if the first stage of the SpaceX Falcon 9 rocket will land successfully. With the help of your Data Science findings and models, the competing startup you have been hired by can make more informed bids against SpaceX for a rocket launch. In this course, there will not be much new learning, instead you’ll focus on hands-on work to demonstrate and apply what you have learnt in previous courses. By successfully completing this Capstone you will have added a project to your data science and machine learning portfolio to showcase to employers....

Top reviews

LD

Oct 23, 2019

Its was great experience in completing the project using all skills that we learned in the course, thanks to coursera and IBM for giving me an opportunity to update my selft and also to test my skills

CS

Jun 15, 2023

It's a great course to get a comprehensive background on Data Science (including ML) and lays the foundation for more advanced courses. It touches on all the areas that are required for data science.

Filter by:

1 - 25 of 992 Reviews for Applied Data Science Capstone

By Johan c

•

Dec 17, 2018

Instead of only peers review, I think it would be better if someone professional also review our capstone project and gives us feedback

By Shannon R J

•

Dec 1, 2019

Capstone implies apply what you learned throughout the program. I appreciate that you were able to work in things you learned of your choice if you wanted to, but the sole requirement and focus of the capstone shouldn't be to include something that was just introduced. Also, the graded lab that isn't part of the final project cannot be completed with the knowledge provided by this course. I should NEVER receive instructions to check out more help on YouTube from a course for which I am paying. I will not recommend this course to anyone.

By Jesse Z

•

Jul 15, 2019

Stay away. Instead of taking the time to teach the material requested in assignments it tells you to go to youtube and teach yourself. It's a pathetic finish to a certification course with such a prestigious company name attached to it.

By Alexander H

•

Sep 28, 2018

Had to provide a credit card for FourSquare which I did not appreciate

By Rajayogasri P S

•

Oct 26, 2018

I was not too happy with the way peer grade assignment was done and it is being used as a mechanism to grade the course. My submissions were not reviewed correctly and because of that I felt that the course duration prolonged for one more month, and I had to pay my subscription for one more month for no reason.

By Narsi S

•

Feb 22, 2020

This a capstone project as part of my IBM Data Science professional certificate. The course was intended in my view as a recollection of the material and practices taught in the course all rolled into a nano project.

In my view the topic and objectives for this course were very loose but the main focus assumes to be foursquare API's which were not mentioned until this course. The topics were loose which meant issues encountered in data collection via scraping or visualization might not have been covered within the course.

For me it was a learning experience but I am not sure about the value of the certificate offered by IBM. For starters the grading is peer reviewed which of course means the grade are not quality controlled but a reflection of your peers grading abilities regardless of whether they would like to shoulder those responsibilities.

There is no proctor administered for graded examination or office spaces for internship like experience and assumes some higher power is reviewing your honor code and motivation.

As far my application with this certificate has not given me a technical advantage even within IBM and I am not sure if the third party career counseling offered via Coursera have a success story.

I enjoyed the course even though the course and its material very rough and marketing oriented. The course was supposed to provide me with a practical advantage in the area of Data Science as a new entrant and I have not observed any advantages so far with my applications on linked in.

By Ali C

•

Dec 19, 2018

Quizzes are poorly designed. Evaluates only memorized information.

By Ashish D

•

Dec 22, 2019

Utterly useless. It mandates a learner to work on geo data related project only.

And that too using a very specific api and data.

No option to work or submit meaningful capstone projects.

By Debra C

•

Mar 24, 2019

Utilizes skills learned throughout previous courses and puts it all together in Capstone assignment. Found the instructions to be lacking but it is a Capstone so not totally unexpected. I did find some of the instructors comments in the forum to be somewhat unprofessional so maybe some coaching should be done on how to respond to students who pay to take the course; even those that frustrate you!

By Stanislav R

•

Jun 23, 2019

I liked working on a project from beginning to end - finding a problem to solve, acquiring data, creating & testing hypotheses. It really puts what you've learned to test. I also learned some techniques that were not covered in the course and other skills like creating Medium posts.

I didn't like the review aspect. You only have to review 1 project and receive a review from 1 person which is not enough. I reviewed multiple submissions and found it very educational. The review criteria are vague and mostly cover just the presentation of results. They don't assess the quality of analysis itself (and it's difficult for an unexperienced person to do without guidelines). Getting feedback from more people would be interesting.

The discussion forums are not helpful since they're spammed with "Please review" threads - and the staff doesn't do anything about it. This applies to the whole specialization.

By Hakki K

•

Jul 9, 2020

Hi,

I completed entire program and received the Professional Certificate. On the Coursera link of my certificate "3 weeks of study, 2-3 hours/week average per course" is written. This information is not correct at all, it takes approximately 3 times of that time on average! I informed Coursera about it but no correction was made. It should be corrected with "it takes approximately 19 hours study per course" or "Approx. 10 months to complete Suggested 4 hours/week for the Professional Certificate".

Here is the approximate duration for each course can be found one by one clicking the webpages of the courses in the professional certificate webpage: (*)

Course 1: approximately 9 hours to complete

Course 2: approximately 16 hours to complete

Course 3: approximately 9 hours to complete

Course 4: approximately 22 hours to complete

Course 5: approximately 14 hours to complete

Course 6: approximately 16 hours to complete

Course 7: approximately 16 hours to complete

Course 8: approximately 20 hours to complete

Course 9: approximately 47 hours to complete

This makes in total approximately 169 hours to complete the Professional Certificate. As there are 9 courses, each course takes approximately 19 hours (=169/9) to complete.

(*): https://www.coursera.org/professional-certificates/ibm-data-science?utm_source=gg&utm_medium=sem&campaignid=1876641588&utm_content=10-IBM-Data-Science-US&adgroupid=70740725700&device=c&keyword=ibm%20data%20science%20professional%20certificate%20coursera&matchtype=b&network=g&devicemodel=&adpostion=&creativeid=347453133242&hide_mobile_promo&gclid=Cj0KCQjw0Mb3BRCaARIsAPSNGpWPrZDik6-Ne30To7vg20jGReHOKi4AbvstRfSbFxqA-6ZMrPn1gDAaAiMGEALw_wcB

By Ariel E

•

Mar 1, 2019

The only problem is that I ran out of hours using IBM watson and the same thing happened with Foursquare when I reached the maximum numerber of records per day and per hour.

We as students should have tools where we can make mistakes without reaching 'limits of usage'.

By Kris P

•

Apr 23, 2020

The worst course by far in the 9 courses bundle

Please consider remove this course from the bundle

By Ismael S

•

Jun 19, 2019

There should be a clear tutorial on how to scrap a website. The project should be more open and not tight to using Foursquare, and should not be reviewed by other students.

By C P

•

Sep 3, 2020

The blind leading the blind.

Vague and confusing instructions. You are trying to teach new data scientists to do a business case analysis, but you just threw some random data and some generic methodology instructions at them. How can I demonstrate the process of coming to a 'business understanding' ? There's no client, and no goal!

I am genuinely unsure whether you consider it important to use the Seattle accident data, or whether I can use some other kind of data and solve an unrelated problem. The "good" example provided for the last week is something completely unrelated. If I choose something unrelated, too, do I have to risk a bad grade from my peers who don't understand it?

To add insult to injury, there doesn't seem to be any instructor available to answer the many, many desperate questions from learners on the forum.

The whole "peer review" thing needs to be re-through, especially when dealing with such a vague assignment. And the system of everybody spamming the forums with review requests, so you can't find any actual topics for discussion with other students, is a hot mess. And, let's face it, "peer review" is pretty useless anyway (and potentially discriminatory, by the way). If I had known the grading would be on this basis, I would never have bothered with this course.

By Samantha R

•

Sep 7, 2019

This was challenging and a project is always the only way to really learn anything and struggle through. I did however feel that the forum for this course was not useful and that the mentors/lecturer's let us down. They hardly reply to relevant questions leaving students to feel abandoned. With a project you need some support as many students are not 100% comfortable with the code. One of the other courses has the forum broken up into two separate forums: One for the tech questions and another for requests from students to review - this was clever and worked well. Im giving this 2 stars based on the support and lack of direction for the project. May have also been nice to get options for a dataset - not easy to find a dataset in the public domain (spend hours looking for good ones)

By Satwik R K

•

Feb 7, 2020

Mentors won't teach how to use foursquare API and how to apply different ML algorithms. As the certificate names professional Data Science there is no introduction or explanation about neural networks. A deployment part is needed.

By Lindsey

•

Aug 30, 2020

The project was a really good way for me to work on my skills. I rated this course 1* because the instruction was abysmal. Too many instances where additional steps needed to be taken to submit a project which were not included in the instructions. Had to rely on comments from students in the forums to learn what I needed to do. I still don't know how to link a Jupyter Notebook to GitHub. Too many times students projects could not be reviewed because the platform did not allow them to submit a shareable link. I could go on, but after sucking way too many hours of my time trying to complete and submit projects because of the lack of complete information in the course, this course doesn't deserve that much of my time.

By Tara S

•

Apr 26, 2020

The assignment is in and of itself nice, but it is too free. I would have liked a more restricted assignment. During the specialization we mostly had to watch how stuff was done, without much practice on our own, so the step to this assignment was quite large, especially if you are graded by your peers. We were also graded on stuff that was not part of the course, such as reports and presentations. I understand that this is important, but not the aim of the course. Furthermore, we were graded by peers, who are the same level. How can they grade a submission if they themselves do not yet know what is good and what is not?

By Vicky G

•

Aug 6, 2019

This course did not provide enough learning materials for students to complete the project. For example, it asks students to scrape a web page and parse the table on the website and put it into a pandas data frame in a Jupiter notebook.

By Armen M

•

Dec 8, 2019

Just terrible , No Any Idea what to build no any suggestion what methods to use togeher

By Clarence E Y

•

Jun 21, 2019

The real advantage of completing this course goes far beyond learning the skills that data scientists use every day. The capstone project requires learners to integrate skills, along with domain knowledge of meaningful use cases.Then, with a significant goal in mind, plan the project and execute successfully for peer-review. I think this course comes very close to replicating the actual work products that data scientists do in the real world to a high degree. Of course, dealing with other individuals and project teams are not possible in this format. Having said all this, the real advantage of achieving the certificate is validating to oneself that the basic data science skill set has been mastered.

By Nchedolisa A

•

Apr 1, 2019

This course certainly made me put in the work!! The project requires alot of planning to figure out exactly what you want to focus your analysis on. It definitely forced me to do alot of self-learning in order to complete it. StackOverflow became my best friend when I would get stuck and not know the proper python syntax to execute my desired outcome. Having to create a report and blogpost to document my analysis were definitely two new skill sets I appreciated that this course helped me to learn.

By SAKTHIVEL G

•

Mar 3, 2020

Very good capstone project. Learnt lot of insights on how to represent data through out this course.

Very good starting point for ""Data Science" field. I would definitely recommend this course.

By Chutian Z

•

Jul 31, 2019

I wrote this review after I finished all four courses of Applied Data Science Specialization. Overall speaking, the specialization is good and fairly easy (especially the first two courses). In terms of the Capstone Course, it looks intimidating but it won't be a big problem if you follow the materials closely. The final project is a great opportunity to be creative and to utilize all kinds of sources (and get to know the city you are interested in better). Nevertheless, I think the specialization should include more coding exercises/assignments instead of simple quizzes at the beginning. More hands-on exercises should be added to the introductory courses. Personally speaking, I'd like to get trained more on data cleaning and writing loops/functions.