Chevron Left
Back to Convolutional Neural Networks

Learner Reviews & Feedback for Convolutional Neural Networks by DeepLearning.AI

4.9
stars
42,300 ratings

About the Course

In the fourth course of the Deep Learning Specialization, you will understand how computer vision has evolved and become familiar with its exciting applications such as autonomous driving, face recognition, reading radiology images, and more. By the end, you will be able to build a convolutional neural network, including recent variations such as residual networks; apply convolutional networks to visual detection and recognition tasks; and use neural style transfer to generate art and apply these algorithms to a variety of image, video, and other 2D or 3D data. The Deep Learning Specialization is our foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. It provides a pathway for you to gain the knowledge and skills to apply machine learning to your work, level up your technical career, and take the definitive step in the world of AI....

Top reviews

AV

Jul 11, 2020

I really enjoyed this course, it would be awesome to see al least one training example using GPU (maybe in Google Colab since not everyone owns one) so we could train the deepest networks from scratch

RK

Sep 1, 2019

This is very intensive and wonderful course on CNN. No other course in the MOOC world can be compared to this course's capability of simplifying complex concepts and visualizing them to get intuition.

Filter by:

5301 - 5325 of 5,610 Reviews for Convolutional Neural Networks

By Jalaz K

•

Nov 23, 2018

Assignments really need to be improved. Of all the courses in this specialization, this particular course frustrated me a bit. Thanks to the discussion groups, I was able to sail through.

Moreover, Grader should provide the summary of error in our submission rather than just showing wrong submission. Course Material was really good. 5 on 5 for that part, but the assignments really troubled me and others as well, as can be easily seen in the discussion groups.

By Andreas B O

•

Jan 17, 2020

Lectures were great. The descriptions for all applied operations, algorithms, etc. by Andrew are excellent. However, the Programming Assignments this time around demanded a lot of looking up TensorFlow and Keras functions (even during the Keras Tutorial). Especially Week 3 was a struggle for me. At some point, the framework simplicity is turned into rather harsh complexity. A better explanation of what TensorFlow/Keras commands to would be of advantage.

By Asif I

•

Dec 23, 2017

First of all, thank you for providing such a rich content.

I know its hard to strike a balance between covering content and "actually" delivering them to the student. Course #3 and especially #4 felt very rushed when it came to the exercises. The tensorflow concepts that came back out of nowhere and solutions would have been nearly impossible without the copious hints.

PS: Course 4 "happy house" face recognition assignment was choke full of bugs.

By Nitin S

•

Jul 1, 2020

Very good introduction to concepts on Convolution Networks. It would have been great to put more emphasis on how actual models like "FRmodel" are trained vs tested. E.g it would be great to provide information on the fact that 3 parallel networks need to be used that share weights. So more exposure to practical aspects of implementation would be useful. Essentially a lot more time can be spent on exercises than what is meant for them

By Vahid

•

Nov 7, 2020

Unlike other courses in this specialty, this course was primarily focused on describing some specific methods/approaches (which happened to be very popular) rather than describing high-level concepts. At some points, I had a feeling that the course material reads more like a journal club. While journal clubs can be very useful, I preferred more if this course was mostly focused on overall/generic concepts.

By Michele T

•

Apr 5, 2020

This was an interesting course. It provides a high level look at face recognition/verification and various state-of-the-art aspects of convolutional neural networks. The one thing I found frustrating in this course was the grader. It was very particular for at least one homework assignment on the order in which you entered your variables. I spent way too much time on debugging for simple things like that.

By Matthew C

•

Jun 19, 2018

The content was great, and is probably the best available. However, the grader was so flaky it really shook my confidence in the material. I'm the type of person who will try and try until I'm literally about to give up before I look for help in the forums, so I lost a LOT of time on these exercises. This was by far the WORST of the five courses in the specialization. Sorry to yell, but YOU CAN DO BETTER!

By Samuel R

•

Oct 23, 2020

The Keras and TensorFlow versions used in this course are by now to a large degree outdated. The Newest TF version is at the date of writing 2.3, while the course uses <2.0, so many of the functions used are deprecated in the newer versions

However, Andrew's explanations are great as always except for the convolutional implementation of sliding windows in the 3rd Week. (therefore only 3 stars this time)

By Alan S

•

Nov 19, 2017

Depplearning.AI: Please do not release content unless it is ready. The content is fine, but the assignments were clearly hastily put together and had basic bugs discussed all over in the forums. In particular, week 4 is a complete mess. Boiler-plate code that doesn't even relate student-content (to load a dataset) doesn't even run for many people. This wastes everyone's time. Really disappointing.

By Bjorn E

•

Nov 19, 2019

Overall a great intro to CNNs. But the last part of the course on object detection and facial recognition is very superficial. It explains the logistics of the disciplines (how to keep track of bounding boxes, etc), but it doesn't teach how to actually build such a system. The exercises make you fill in a bunch of indices and do vector math, but deliver the actual hard parts inside black boxes.

By Johannes B

•

Mar 26, 2018

Very good covarage of the algorithms when it comes to analyzing pictures, and a good intro to the theory behind the models. But it is too little emphasis on other uses of convolutional networks like 1d convolutions, causal convolutions and similar. Maybe there are some coverage of these topics in the sequence course in the series, but it should be covered here to a larger extent either way.

By Emanuel D

•

Sep 3, 2020

All video content of this course where great, but i can't say it about programing assignments. YOLO and Neural Style transfer are by my opion advanced topics. I would more appreciate longer programming excersice, not only something where i only add some piece of code and i hardly understand what is going about. For example, convnets were clear, i could implement it by myself, but yolo no.

By Santosh N

•

Jan 3, 2018

Course lectures and questions are very good. The programming assignments are also good questions wise, but the grading mechanism is quite annoying. We had to find out clumsy workarounds to get the correct grading, in one case, the code change needed for getting the correct grade did not result in the expected output. Coursera needs to change the method of grading programming assignments.

By Sinan S

•

Dec 22, 2021

In this course the material/resources regarding Keras is highly insufficient. So far I have made little progress in the programming assignments related to Keras and I achieved this by figuring out stuff by googling which took a long time. If the instructors could extend the course with stuff related to Keras it would be great. At least there should be references to sufficient resources.

By Jayson W

•

Jan 26, 2019

I can't believe the number of technical problems I've had with notebooks not saving my work on homework assignments. It's very frustrating. The content is good and I will continue with the course, but this is the first Coursera course I've had (actually, the whole series in this topic) where I have experienced the lost of work - I just lost about an hour on a homework assignment.

By David C S

•

Jul 16, 2020

I am very annoyed with the evaluation of the notebooks. Not with the content itself, but with the support from instructors, which is non existent.

It took me two days and 10 re-submitions to solve a problem that was unrelated to the code, but to the behavior of the grader system. No one replied my cries for help in the discussions.

Very disappointed with the lack of support.

By Stephen W

•

Dec 7, 2017

The content of the course is very good, as with all the Andrew Ng / deeplearning.ai material. However production standards seem to have slipped for this one. Repeated sections in video material and a final notebook exercise that contained errors and required finding a work around that was posted in a discussion forum. I hope these things can be corrected for others.

By Murad O

•

Nov 17, 2017

I have mixed feelings about this course in particular, although one learns many interesting and useful concepts, I did little implementation on my own. Also the involvement of Keras I found annoying, yes it eases the implementation of ConvNets, but while learning I would have preferred to use tensor flow instead, or even implement a simple NumPy ConvNet on my own.

By Francesco B

•

Apr 2, 2020

The content is very good. The exercises are a bit useless. Don' expect to be able to use tensorflow after this course. Furthermore, they teach the syntax of tensorflow 1 rather than the new 2. Therefore, when you try to solve the exercises you don't understand the discrepancies between the online documentations and what they want for these exercises

By Boyi Y

•

Dec 5, 2018

Excellent course! I have learned the skills to combine image processing with machine learning.

However, the assignment of the Week 3 has a problem that you have not fixed for a long time, and thus it wasted some time. And the assignment in Week 4 has problems of submitting, and that's why I only rated three stars. Hope you can fix the problems soon.

By mike b

•

Feb 4, 2021

First, there should be an upgrade to TF 2.0. In at least one instance the documentation for a function was non-existent. Second there are many places the videos can be cleaned up eg. transcriptions are just wrong like a machine did it, or the speaker repeats the same thing twice in rapid succession. Overall the course felt unpolished and dated.

By Ayush S

•

May 17, 2020

The Face_recognition assignment was a tough one to solve, i only got grader problems but still i wasnt able to figure out how to pass grader even though my code yieded right answers. That's my only complaint otherwise the videos from Andrew were really easy to understand and the programming assignments were very well documented. Thanks :)

By Chris M

•

Aug 2, 2019

The assignments are less copy paste and some allow the student to explorer different NN architectures. However, most of the videos are still a waste of time. And the methods needed to complete the assignments aren't taught to the student. Instead you have to spend a lot of time searching and hoping you find the right method.

By André N

•

Dec 2, 2018

video courses were really good, but the programming assignments drove me nuts. I am a senior software developer and I am writing software for more than 10 years now. I had a really hard time understanding the Tensorflow code. I think it is better to suggest a student to learn the basics of Tensorflow before doing this course

By Tuấn T L

•

Dec 22, 2021

This course is well organized with CNN knowledge. However, it seems like the team is overwhelmed to maintain both a big Tensoflow tech stack in programming assignments while keeping academic science core concepts. Some code comments are outdated and the mentors definitely can not follow up all the issues raised by students.