DE
Aug 14, 2022
I love the detailing of every aspect of this course. The Labs, the free subscriptions and free trials provided by IBM Skills Network, everything has been so amazing. Thank you Coursera, thank you IBM.
MO
Apr 17, 2023
the best course for the beginner who is going to start his data science journey. This course tells you all options like tools, libraries, programming languages, etc. Highly recommended for beginners.
By Maximilien M
•Sep 22, 2022
A lot of talking. The second lesson (about open-source tools) was very informative. I appreciate the small history lessons, and the lists of terms used in Data Science. It gave me a lot of vocabulary terms to look out for. The third lesson was insufferable. I understand IBM wants to sell their product... but I didn't sign up to the course to use Watson. I want to use Python. Why they couldn't make it as basic as their "lesson" (i.e., vocab and history) is beyond me.
By Alex C
•Feb 18, 2022
This course gave a good background on the types of software and tools available for data science. My issue with it is a lack of organization and clear outcomes being stated. The majority of learning has to come from the videos with respect to content and the grades rely heavily on if you remember facts about the many different pieces. The strength of the course is in the practical applications with the labs which were very basic and next to no coding was required.
By Thomas S
•Sep 19, 2022
Since I am new to data science, I enjoyed learning about the many tools available but this course takes a very long-winded approach to do so. It feels like an endless descriptive list of tools with few practical exercises actually using them and seeing them in practise. I also dislike the quizzes; they tend to test your memorisation of earlier content rather your understanding of the topic - this is not a useful way to learn and could be dramatically improved.
By Ariel R
•Apr 3, 2020
. For the final assignment, Instructions in videos didn't match what seen on screen and had to watch youtube videos and websites in order to complete my assignment.
. some of the graded quizzes used multiple-choice questions which you had to pick from a combination of answers to get it right. This is effectively a to add more questions into one. If the quiz says 5 questions, it shouldn't be extended by adding sub-questions shown as "choices".
Thanks
By Zheniya M
•Mar 8, 2021
Nice overview, though the course materials have not been updated for more detailed navigation within IBM Cloud Pak for Data, in addition, in would be much more convenient if in all of the videos there there would be possibility to save shorter specific notes at particular timestamps, there problems with the IBM Cloud Pak Lite subscription which has limited usage and one has to wait until the counter is updated in the beginning of the next month.
By Karinne B
•Nov 9, 2022
Gives a good high-level overview of tools used in data science and introduces some on-the-ground very beginning experience with GitHub and Jupyter notebooks. My main complaint is that often the quiz/test questions are not written well, cover content that is not mentioned in the videos, or are not necessarily measuring whether you are understanding key concepts but rather whether you can memorize what different IBM Watson Studio tools are called.
By Jarred P
•Jul 1, 2022
It really feels like they are trying to sell me their product. This course is kind of an introduction to Juypter notebooks but I don't feel someone who has no experience would complete the final assignment easily. There also seemed to be a lot of information taught that seems too specific and not necessarily relevant for a new data scientist, felt like there was a lot of jargon that was not explained well and grouped up with other jargon.
By Adrian R
•Mar 10, 2021
Some of the lab instructions are out of synch with the screenshots. Also some of the external sites references look and work differently then the screenshots or instructions. The section about the IBM tools is a huge dump of information that's somewhat confusing and doesn't appear very practical/usable to someone new to the field. The Git command line part looks very amateurish and is very hard to follow up by someone new to the subject.
By Miguel V
•Jul 14, 2020
A bit of an overload on certain information. I could see how some people, especially those who aren't as familiar or comfortable with programming jargon, would get overwhelmed. Accessing Github and using it's commands was one of the major concerns of most students when I read the discussion boards. Perhaps some editing or reorganization in that topic is required. Other than that, I'm grateful that this course introduced me to JupyterLab.
By Stéphane V
•Oct 24, 2024
- module 7 is useless, you should tell people to NOT provide their credit card number at the beginning of the course, not somewhere in the middle. To get and use the free account happened to be very difficult, I simply abandoned this optional module, it's a waste of time. - what 's the added value of listing tons of tools we don't use? The most interesting part of the course is the Jupyter assignment, because it is something concrete.
By Yeh Y J
•Jan 8, 2020
good technical guide but lack the context. For example, there is no explanation on why i need to convert to RDD, why would i want to move the paragraph around. There is no practical references that aid the understanding of the technical steps. This needs to improve especially for someone who has very little programming background who probably only heard of SQL, Python and R at this point in time. Scala, Jupyer, Zeppelin are all new.
By Diane A
•Apr 4, 2020
i did learn how to do specific things but i found that there was not enough context. i.e. when would i use Jupyter? When would i use R? SOme concrete examples and exercises would have been helpful.
What was particularly unhelpful was the fact that the videos were out of sync with the tool so it took me ages to figure out what was wrong. The videos need to be updated!! i saw that i was not the only one who found this difficult.
By Abdulah H A
•Jul 11, 2019
I think it would be better if the course focused on one online platform such as Skills New Labs rather than learning about multiple notebooks with multiple programming language with multiple work benches. It is to some extent confusing for someone with no prior experience in working with python, scala, or R. Nonetheless, this course has allowed me to understand more about available options which could be beneficial for experts.
By Ismayil J
•Dec 24, 2018
Course provide brief overview of available tools used for Data Science. For awareness good, for getting working skills on any of them, no. At the end I get confusing feeling what to use in which situations, as if they all do the same thing. Possibly I would recommended to provide awareness bout all, but give in-depth practice, additional week, for one of the tools. It could be IBM's or Apache Zeppelin as more universal.
By Sahil V D
•Jul 30, 2020
The course is too hectic. As I am coming from Mechanical Engineeering background, the words used in this course related to data science(and related software) went above my head. There should be some videos regarding the basics of the terminology related to IT WORLD( with practical example) in this course. Watching that Juypter notebook and other tools were so challenging as they were difficult to understand for me.
By Tyra J
•Jan 20, 2020
I was really interested in the open source tools, but I feel like this would have been more easily retainable by taking a Python course first. Also the last week was all about marketing IBM Watson Studio as a superior DS tool but it's UX was super difficult to navigate. The video tutorials were outdated so I had to Google and eventually kept clicking until I found something as simple as opening up a new notebook.
By Surawut P
•May 26, 2022
Sometimes, the link in lab activity not match the illustration pictures. Furthermore, IBM Watson is not friendly to use. When that happen, I almost always lost and can not follow the instruction. I feel frustrate when this happen, and make the course more stressful.
Apart from the examination usually ask about minor detail rather than main idea, the feedback is bad too. It is not explain why the answer is wrong.
By Kateryna C
•Jun 1, 2020
It feels superficial, and I felt lost trying to do the assignments, as if I didn't have enough information to use the notebooks. I did a lot of outside Googling. If the purpose of the course was just to give a glimpse of what Data Scientists use, it did what it intended. But the experience was difficult, because I constantly felt I was expected to be able to do things that I hadn't been given the tools to do.
By Vimal O
•Nov 9, 2021
On overall IBM data science professional certificate track: Pros: Content is just good enough, instructors are good. Cons: IBM watson and the platform given to practise on is awful and has terrible performance and reliability issues, most often doesnt work and had an impact on my test deliverables. I personally overcame those issues to some extent with kaggle's and google colab jupyter notebook environments.
By Vladyslav M
•Mar 6, 2019
IBM Watson was updated and changed the design, it became harder to understand how create a notebook and etc.
IBM Watson is lagging, the code (Python 3.5) runs through time.
The final assignment is described incompetently, as there are bindings to the cells. In the beginning it is said that their number is varied, and then they give a binding of the context to them, because of which the evaluation is wrong
By Jeremy G
•Aug 29, 2020
Course gives a broad overview of tools that are available for Data Science functions. However, I think it would be better to introduce more of this along the way particularly in the following Professional Certificate courses that focus on specific parts of Data Science. Its hard to connect the dots on what Tools are available when you don't really have the foundation yet on what you would use them for.
By Miranda C
•Apr 28, 2020
I learned a lot in this course but much of it was a result of the helpful comments of my fellow students. Sadly much of the material, especially the videos on IBM Watson, was out of date and useless. I was happy to be able to google terms and read the helpful comments from other students and find my way through the course, but this course is inadequate on its own and in desperate need of an update!
By Vladimir K
•Mar 20, 2020
I wouldn't say it's good introduction to open source tools for data science. It's rather IBM open tools for data science. They highly recommend you to use this cloud based IBM tools but then you will face with a lot of problems with that - Skill Network Labs notebooks is impossible to use because it will kill kernel after minute or two of idleness; it will maintenance work in critical moments, etc.
By Christopher S
•Nov 21, 2019
The course has a lot of good material if you are learning about Data Science with no industry background. The hurdle to a better rating though is the outdated videos. They make the learning experience unnecessarily confusing when you are trying to apply the lessons in real world systems that have changed so drastically. With a few video updates, this would be a 5 star course for a beginner.
By Amine L
•Jun 17, 2020
Too much information in a commercial format. I mean i get it that the course is offered by IBM, but a whole section presenting the different tools was maybe too much. The tutorials were not very informative and their pace was too fast. Also some vocabulary was casually used all along while never introduced at any point in the course so far. Really had trouble getting to the end of the course.