University of Maryland, College Park
Cómo combinar y analizar datos complejos
University of Maryland, College Park

Cómo combinar y analizar datos complejos

Sponsored by BrightStar Care

Gain insight into a topic and learn the fundamentals.
9 hours to complete
3 weeks at 3 hours a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
9 hours to complete
3 weeks at 3 hours a week
Flexible schedule
Learn at your own pace

Details to know

Shareable certificate

Add to your LinkedIn profile

Assessments

4 assignments

Taught in Spanish

See how employees at top companies are mastering in-demand skills

Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 4 modules in this course

Tras completar los módulos 1 y 2 de este curso, entenderás cómo estimar estadísticas descriptivas, generales y de subgrupos de los datos de encuestas. Revisaremos el software usado para la estimación (R, Stata o SAS) con ejemplos sobre cómo estimar determinados valores, como medias, proporciones y totales. También aprenderán a estimar parámetros en modelos lineales, logísticos y de otro tipo, y conocerán las opciones de software, haciendo especial hincapié en R. En los módulos 3 y 4, se hablará sobre cómo agregar datos a los análisis. Esto supone conocer de técnicas de vinculación de registros y saber qué se requiere a fin de obtener los permisos necesarios para vincular datos.

What's included

7 videos6 readings1 assignment

En el módulo 2, se explica cómo estimar parámetros de modelos lineales y logísticos mediante datos de encuestas. Tras completar este módulo, entenderás cómo los métodos utilizados son distintos de los que se usan en datos que no son de encuestas. También hablaremos sobre las características de los conjuntos de datos de encuestas que deben tenerse en cuenta cuando se estiman errores estándar de parámetros de modelos estimados.

What's included

8 videos8 readings1 assignment

El módulo empieza con el debate actual en torno al uso de más registros administrativos (vinculados) en el Sistema Estadístico Federal de los EE. UU. y una motivación general para vincular registros. Se ofrecerán numerosos ejemplos que explican por qué es útil vincular datos. Se analizarán los desafíos de la vinculación de registros. También se incluye un resumen breve sobre las técnicas clave de vinculación.

What's included

4 videos12 readings1 assignment1 discussion prompt

En este módulo, se mencionarán los problemas clave a la hora de obtener el consentimiento para la vinculación de registros. La falta de consentimiento puede provocar sesgos en las estimaciones. Se darán ejemplos de investigaciones actuales, así como sugerencias prácticas sobre cómo obtener el consentimiento de vinculación.

What's included

5 videos3 readings1 assignment

Instructor

Richard Valliant, Ph.D.
University of Maryland, College Park
5 Courses16,630 learners

Offered by

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Recommended if you're interested in Data Science

Placeholder

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy