JM
Sep 21, 2022
Specacular course to learn the basics of ML. I was able to do it thanks to finnancial aid and I'm very grateful because this was really a great oportunity to learn. Looking forward to the next courses
FA
May 24, 2023
The course was extremely beginner friendly and easy to follow, loved the curriculum, learned a lot about various ML algorithms like linear, and logistic regression, and was a great overall experience.
By KurwaFellow.in4k
•Oct 21, 2023
I enjoyed the way fundamentals were thought and it was comprehensive yet simple. I only have few complaints: 1. the practice lab and quizzes could be a bit harder and more twisted. and the number of programming assignments could be more 2. it will be great if the course focuses a little bit mode on building models using libraries such as scikit-learn rather than just explaining the theories and mathematics behind it. 3. it will be helpful to ass subjects such as cross validation, XGBoost, pipelines etc. that are essential to build an accurate model to make learners more familiar with the real word problems of training a model rather than just explaining the basics thanks for such a good content again.
By Yogev H
•Sep 9, 2022
I don't know if I'm perhaps not the target group of this course, so perhaps my review isn't relevant.
The course itself felt very slow and shallow, and did not give me a lot of theoretical background that I was interested in understanding.
Additionally, I find the optional labs, quite cumbersome to load and play with, additionally the practice quizzes were sometimes phrased a bit confusingly.
However, I do have to say that I understood the main ideas. It's just very not challenging.
By Javier B
•Jul 3, 2023
The course provides a lot of very good high level information in Machine Learning (Regression and Classification) , but it feels like I was strolling through the park. The course lacks rigor, but makes up for it with very good explanations and intuition. Still leaves you wanting more. I think you are going to take up a students time, provide them with the same level of information as a graduate student. After all, they want to use this in the real world, do they not?
By Andrew L
•Jun 30, 2023
Not as good compared to the previous machine learning course (the one done with Octave), you aren't pushed to write the vectorised implementations, even the example code and starter code in assignments is done with loops. No introduction into the "@" syntax of numpy. I prefered the math syntax of the prev course with hypothesis function and Theta for weights, including adding the bias term itself as theta_0 within the weights vectors.
By Daniel S
•Sep 19, 2023
The educational material was good, but the assessments were very simple. The quizzes and assignments could have been more thorough to properly assess whether I had grasped the material, rather than "fill in the blanks" and multiple choice (though often only 2 choices) style problems. A certificate from this course is not a good indicator that the student has learned the material.
By daniel c
•Sep 21, 2024
The course dives too deep into the math behind the type of regressions to make predictions. But it lacks practice in using python libraries to actually put them into use. Instead of having to calculate each operation manually it should present the learner with more opportunities to implement python machine learning libraries to get some hands on experience.
By Praveen K T
•Jun 17, 2023
Error that was shown after an assignment is done was not helpful to debug on where the error is and took couple of hit and trial to work. The cell blocks said all tests successful but was unable to submit the assignment. User friendly text explanations on where the error is, Highlighting in red etc could have been helpful.
By David M
•Apr 29, 2023
The videos were great and it was an excellent introduction to machine learning. However, I feel like the quizzes should test our knowledge a little more. The questions are too simple and makes it so that I am not sure if I actually have a good understanding of the material being taught.
By Waleed S
•Oct 2, 2022
Practice labs are not well organized as previous course. The optional labs have less hands on activities which gives less hands on activities for the learner. It would be great if there could be more activities that the learner could perform instead of just looking at the code
By Yevhen O
•Sep 5, 2023
It's okay for intro but I feel need in more practice. Don't expect to get skills from this course. You will get a lot of new theoretical information with just a scratch of practice. So I suggest to mix this course with some good books + practice.
By Parsa G
•Mar 2, 2024
it was a really great theorical course but the practical parts were too small. so I know alot about the concepts and I can calculate stuff but i can not implement them that much , and I'd rather the course to have more difiicult math! well done!
By Prathmesh
•Sep 9, 2024
Could give a bit more focus on the coding part. What I mean is rather than giving notebooks with already written code, you could teach the code to the students and have them write it themselves.
By Jorge M
•Feb 28, 2023
It is really interesting, I think I have miss more focus on connecting everything together from the function f_wb to cost function to deltas to preditions. The labs are not very challenging.
By J.P B
•Mar 29, 2024
Code cannot be transferred easily to jupyter notebooks or google colab. The course was 90% theory. Needs more real-world practice and projects. Other than that Theory was very good.
By Arvin G
•Dec 6, 2022
the course is well structured and you'll gain the fundamentals of ML. But the practical labs should be more challenging in my opinion. I am looking forward to the next course.
By Sourabh P
•Mar 12, 2023
There is very less practice content for students. I hope keeping more graded notebooks would be helpful for students to get more practice and understand the concepts better.
By Antonio G
•Dec 10, 2022
The course is interesting but focuses on very theoretical aspects, more suited to academia than the working world. Unfortunately, the audio is not the best.
By Phil N
•Jun 26, 2024
This course requires Python programming experience using the libraries this course needs. It is not suitable for learners with basic coding experience.
By Jack B
•Jul 14, 2023
Much more of the lesson content needs to be focused on the code, rather than the underlying maths, seeing as it is purely code which is assessed.
By Rob I
•Jun 12, 2023
Love the trainer. Would have been nice to start coding earlier. By the time we were called to actually write code, it was way too late.
By Seyyed F A N
•Jun 23, 2024
The videos were really helpful, but the optional labs were useless. Besides, the practice labs felt like you are jumping few steps.
By eklektek
•Jul 20, 2022
Doesn't really enable "DeepUnderstanding" - all abit rushed. Spend time afterwards going through more examples with more rigor.
By Rollie O K
•Sep 20, 2023
Had problems with Python. I does so much for you it sometimes makes it difficult for a C, C++ or Java programer
By Hosein F
•Oct 20, 2022
Lectures were very clear and smoothly explained but the discussed consepts were only for complete begginers.
By Muhammad B
•Dec 4, 2023
Thank you sir . I learned many new things from this course which will help me to much in my research work..