Chevron Left
Back to Statistical Inference

Learner Reviews & Feedback for Statistical Inference by Johns Hopkins University

4.2
stars
4,439 ratings

About the Course

Statistical inference is the process of drawing conclusions about populations or scientific truths from data. There are many modes of performing inference including statistical modeling, data oriented strategies and explicit use of designs and randomization in analyses. Furthermore, there are broad theories (frequentists, Bayesian, likelihood, design based, …) and numerous complexities (missing data, observed and unobserved confounding, biases) for performing inference. A practitioner can often be left in a debilitating maze of techniques, philosophies and nuance. This course presents the fundamentals of inference in a practical approach for getting things done. After taking this course, students will understand the broad directions of statistical inference and use this information for making informed choices in analyzing data....

Top reviews

JA

Oct 25, 2018

Course is compressed with lots of statistical concepts. Which is very good as most must know concepts are imparted. Lots of extra reading is required to gain all insights. Very good motivating start .

RI

Sep 24, 2020

the teachers were awesome in this course. I liked this course a lot.Understood it properly.Thanks to all the beloved teachers and mentors who toiled hard to make these course easy to handle.Gracious!

Filter by:

651 - 675 of 871 Reviews for Statistical Inference

By Jeremy S

Feb 28, 2020

This is a decent overview of statistical inference techniques. Make sure you understand each lecture before moving on to the next since they build on each other. The lecture notes are decent but not great. I found it cleaner and easier to take my own notes.

By Eric J S

Aug 6, 2019

This course was better than the others in the program because there was much less of a gap between the lectures and the graded sections in terms of expectations. Still, I knew this material going in and would not recommend this as a way to learn it.

By Christopher B

Jan 3, 2017

It felt like there were a lot of jumps between basic statistical formulae and abstractions thereof. While I don't think it was inappropriate for a course on statistics in itself, it felt rather out of place in the rest of the sequence of this course.

By Richard M

Feb 17, 2021

I have taken almost 10 classes from Coursera and this is the first one that I was not pleased with. I had to do much additional work studying examples and explanations on the Internet because those given by the instructor were not asdequate.

By rfdean

Nov 28, 2016

The sections on bootstrapping and permutations were great! The instructor does much better, information is easier to follow (better and slower explanations), and the instructor is more engaging when he is not reading from his notes.

By Manolo M

Dec 20, 2019

The content of the course is really good and so the practices. But the teacher does not know how to explain things and easy subjects are transformed into a difficult ones. I had to study other books to really understand the subject

By Henk B

Mar 30, 2020

Although the topic was very interesting, the way of teaching was troublesome. Teacher spoke often in a way as if he talked to specialists. So it was often hard to understand, and for understanding I needed to consult other sources

By Massimo M

Feb 15, 2018

The subject of the course is very interesting and the professor is very competent. I had the feeling that some subjects were explained in a way that is not very convenient for someone coming from a non-statistical background.

By Jason M C

Mar 28, 2016

The material in the class is solid, but is poorly described. These are the foundations of statistical analysis, and unfortunately there's a lot of statistics jargon that students aren't going to be familiar with in here.

By Richard M A

Nov 28, 2016

Nicely outlined and broad in scope, but Brian's presentation is kind of dry. It often appears that he is reading off a script, and sometimes his emphasis on technical details takes away from ease of understanding.

By Fernando H S M

Mar 1, 2016

I think the theory is too dense, but with a weak link with R. I understood better with swirl than with the videos. I'd suggest a more organized video with less draws and annotations. They confused me sometimes.

By Suman G

Mar 31, 2018

Statistics & Probability being two of the toughest subjects, this course could have been taught a bit more novice friendly way, so that learners with no background in maths can also grab the lectures easily

By Fernando L B d M

Sep 29, 2017

I had some difficult to follow the lessons, because the professor is kind of reading the material and not building the concepts during class time. I had to look for other videos and texts out of coursera.

By Abhinav G

Feb 11, 2016

As someone who isn't from math background many of concepts thought in here weren't quiet clear or intuitive. Could use more details or pointers to reading materials to help understand the concepts better

By Paramesh S

Jun 4, 2020

Disappointed with the way the course has been taught. The instructor just reads out from the slides. Had to refer lot of other material to understand the topics being taught in this course.

By SUDIPTO M

Dec 12, 2017

i belive this course should be taught in 6 weeks at least and not 4 . There are multiple areas which needa deep dive. with the month based subscription it is very difficult to deep dive

By Sudha S

Apr 28, 2016

Teaching material is very good. But I feel the Professor's explanation is monotonic and uses more of textual definitions rather than simple explanations which are required for starters.

By Lucas L A

Jun 8, 2016

The course is really interesting, but I believe the professor approach to describe and explain the topics is really confusing. I had to search other resources to clarify the topics.

By Pritesh S

Dec 14, 2018

A pretty tough course, but I learned some new things. The assignments can be be made better, as well as the evaluation of assignment, which is being done by peer review right now.

By Bjoern W S

Mar 14, 2016

very difficult with lots of math not properly explained. What's the point of learned all these formulas by heart if you cannot use the properly because that is not explained well.

By Josh J

May 1, 2017

Material was interesting. Did not enjoy the teaching method of Prof. Caffo. Very scripted and skips way too fast through some of the equations and R code he's trying to teach.

By Ramy H

Oct 1, 2017

Material should be supported by more examples. ie. at the end of the course, I couldn't perform a basic statistical test.

Bootstrapping modules completely missed the context.

By César A C

Nov 16, 2017

You will review basics and main statistical theories. However the course videos and explanations are not as intuitive as in the previous courses. Statistic is always tough.

By Svetoslav A

Dec 19, 2016

3.5 - Good, but I feel some of the explanations were over complicated a little compared to other coursers such as openintro to stats. Overall good experience though

By Hongzhi Z

Nov 16, 2017

整个专题里面boring的一门课之一,Brian教授的视频一直是1.25time速度看完,有些例子例如最后的Hypothesis testing 真的学得很困难,即使我在大学时候曾经上了概率统计的课,对没有数学和统计基础但想从事数据科学的人员真的是十分不友好,希望改进:1、课程视频变得有趣 2、PPT资料里面的公式详细解析