Chevron Left
Back to Supervised Machine Learning: Regression and Classification

Learner Reviews & Feedback for Supervised Machine Learning: Regression and Classification by DeepLearning.AI

4.9
stars
25,380 ratings

About the Course

In the first course of the Machine Learning Specialization, you will: • Build machine learning models in Python using popular machine learning libraries NumPy and scikit-learn. • Build and train supervised machine learning models for prediction and binary classification tasks, including linear regression and logistic regression The Machine Learning Specialization is a foundational online program created in collaboration between DeepLearning.AI and Stanford Online. In this beginner-friendly program, you will learn the fundamentals of machine learning and how to use these techniques to build real-world AI applications. This Specialization is taught by Andrew Ng, an AI visionary who has led critical research at Stanford University and groundbreaking work at Google Brain, Baidu, and Landing.AI to advance the AI field. This 3-course Specialization is an updated and expanded version of Andrew’s pioneering Machine Learning course, rated 4.9 out of 5 and taken by over 4.8 million learners since it launched in 2012. It provides a broad introduction to modern machine learning, including supervised learning (multiple linear regression, logistic regression, neural networks, and decision trees), unsupervised learning (clustering, dimensionality reduction, recommender systems), and some of the best practices used in Silicon Valley for artificial intelligence and machine learning innovation (evaluating and tuning models, taking a data-centric approach to improving performance, and more.) By the end of this Specialization, you will have mastered key concepts and gained the practical know-how to quickly and powerfully apply machine learning to challenging real-world problems. If you’re looking to break into AI or build a career in machine learning, the new Machine Learning Specialization is the best place to start....

Top reviews

JM

Sep 21, 2022

Specacular course to learn the basics of ML. I was able to do it thanks to finnancial aid and I'm very grateful because this was really a great oportunity to learn. Looking forward to the next courses

FA

May 24, 2023

The course was extremely beginner friendly and easy to follow, loved the curriculum, learned a lot about various ML algorithms like linear, and logistic regression, and was a great overall experience.

Filter by:

4476 - 4500 of 4,964 Reviews for Supervised Machine Learning: Regression and Classification

By ZhenyuChen

Aug 17, 2022

good

By vinod t

Aug 12, 2022

good

By Sayem B

Jul 26, 2022

good

By Carloka B A S M

Oct 28, 2024

...

By Onalenna E M

Jun 7, 2024

10.

By Daniel D

Apr 16, 2024

amz

By Márcio A C B Z

Mar 18, 2024

Top

By Markelov G M

Nov 22, 2023

Top

By Ahmed A

Jul 18, 2023

wow

By Vikas

Oct 13, 2024

no

By Edeki M E

Sep 29, 2024

ok

By 石天辰

Apr 17, 2024

很好

By Putu G P A

Apr 3, 2023

:)

By 王家乐

Dec 31, 2022

很好

By atiye g

Nov 12, 2022

ok

By Jaber

Aug 10, 2022

<3

By Shashi S

Jan 8, 2025

5

By bowen y

May 25, 2024

By Fatema K A

Apr 23, 2024

-

By Mohamed A A

Apr 15, 2024

By Ujjawal J

Aug 10, 2023

m

By SAI R

Jun 17, 2023

.

By Luiz A

Sep 12, 2022

v

By William W

Sep 13, 2023

It's fine if you have a relatively strong background in implementing "multi-step" mathematics in Python. I would not say this is for an actual beginner. Maybe not even someone who is concurrently learning Python AND this course at the same time. I'm rating the course highly for the subject matter that it presents, but I struggled IMMENSELY during the practicals (you actually code key portions of the definitions--but not the entire Jupyter notebook).

The video portion is awesome. Andrew ("Dr. Ng"?) provides an excellent "plain-english" down-to-earth explanation of the math behind the algorithms. The code, however... Well, let's just say it FEELS like one of those art-instruction jokes: "Drawing an Owl: First you start with two circles. Second, you draw the rest of the (explicative) owl."

I don't really think I have much of a furture in anything remotely involving math and programming. After this course, I honestly feel more inclined to stick to dumping data with SQL and letting the grownups slice and dice it.

Bottom line: I've been in IT for over two decades and have alot of (outdated) skills in my toolbag, but this course brought me to tears of feeling like my brain is finally starting to slip away. I just can't learn stuff the way I used to. I don't know. Maybe this will all make more sense after I've slept on it.

By Dusan S

Nov 13, 2022

Great introductory course, Andrew is really talented in making everything he says crystal clear. However, I've found few minor things I don't like:

1. As someone who started this course when it was free, I can say that previous version offered much more insights and tougher assignments and harder quiz questions, it was harder overall. This version feels kinda dumbed down a bit.

2. Some (important?) things are left unrevealed, not enough attention is paid to the issue of feature selection and feature engineering (maybe some of it will be covered to extent in other specialization courses). That last assignment that included regularization in logistic regression had already given function which mapped 2d features into 27 dimensions, and someone without much math background could not really see how to map such cases by themselves. Maybe that stuff is out of scope of this course, but whole model fails if someone doesn't know how to do that input preprocessing and knowledge about algorithm then becomes irrelevant.

That being said, whole course was amazing and interactive, with really valuable content, especially for a beginner.

4.5/5 from me