WK
Mar 13, 2018
I was really happy because I could learn deep learning from Andrew Ng.
The lectures were fantastic and amazing.
I was able to catch really important concepts of sequence models.
Thanks a lot!
MK
Mar 13, 2024
Cant express how thankful I am to Andrew Ng, literally thought me from start to finish when my school didnt touch about it, learn a lot and decided to use my knowledge and apply to real world projects
By Seyyed M A D
•Mar 6, 2020
Very Important !!!
Hi,
We do need more programming assignments in order to master the material. We joined Andrew's courses to master (not just get introduced to) the materials, because Andrew and the rest of the team is awesome.
Thank you very very much for all your time and consideration
By Faraz H
•Mar 13, 2019
I am overwhelmed by too much material. Additionally Tensorflow and Keras syntax is not very elegant or coherent as they are such high-level languages. I learnt a lot at a high-level overview in this course, but my fundamental understanding was consolidated in the previous 4 courses.
By BlueBird
•Sep 7, 2019
Finally, the last course was completed. For me, this course is very difficult, because the content of the course is somewhat obscure and difficult to understand. But I learned some basic knowledge about Natural Language Processing and Speech Recognition through this course. Thanks!
By Kang C
•Nov 10, 2022
Insightful course though I wish the course would be longer and more spelled out, since sequence models are quite complicated and harder to understand. Instructions on programming exercises are also sometimes pretty unclear, especially in later weeks. Still, overall a great course.
By Carolina F
•Jan 8, 2020
This is my third course in Deep Learning, the contents and pace of learning are great, they provide a good level of understanding in the subject. The notebooks have bugs and I wasted a lot of times making them work, thus they could be improved to use that time actually learning.
By Osman F K
•Dec 24, 2019
The concepts presented in this course were advanced enough. Yet, the assignments did not require much effort and thinking, which in my opinion is hurting the learning process. If students do not struggle enough with the course, they tend to forget the material they have learned.
By Othman B
•Feb 22, 2018
Very interesting courses. I take this as a basis for future applications. I only regret that the exercises are too guided. I can't pretend to be able to accomplish a project in machine learning :-(
I would recommend also to note all the references to the papers, they are helpful.
By Cosmin D
•Sep 26, 2018
Great content, assignments are fun and reasonably instructive (although they contain the occasional error and the video editing for the lecture content seems a bit rushed at times). I would recommend this course as an introduction to recurrent neural networks and related ideas.
By Ernest W
•Jul 8, 2021
Course is about recurrent neural networks, natural language processing and basics of speech recognition. Valuable content and great delivery by the author expect the final week where it's difficult to understand the transformers network and the related programming assignment.
By Justin P
•Apr 19, 2020
Very informative and well taught course on sequence models. The amount of content and pacing was just right as not to be overwhelmingly complicated. There are a few bugs here and there in the programming exercise which can lead to a lot of headaches but overall a good course!
By Сергей С
•Aug 19, 2020
Great course, with interesting programming assignments, but still, I couldn't catch intuition about GRU and LSTM nature (I understood its pupuse and equations but couldn't get why exactly THAT combination of equations is necessary to allow RNN learn long term dependencies).
By Михаил М
•Jun 11, 2018
Week 3: quite a complected network was used for trigger word detection; however, it is not clear why exactly this architecture was used; specific order of dropout, batchnorm and GRU seems to be a pure magic; at least, a few words why this combination is picked are needed.
By Elena J
•Sep 28, 2020
very good hands-on course. Yet I wished in the programming assignments, it was stated clearer, whether the implemented code is for understanding purposes only (and hence being the reason to be implemented) or is still mandatory even when working within a library (keras).
By Stephen S
•Feb 17, 2018
Course content is excellent, I would have given 5 stars, if the Programming assignments wouldn't have bugs. Fortunately people in forum help out with solving issues with assignments. I believe it's due to the short time frame the course is online and bugs get corrected.
By Viliam R
•Mar 24, 2018
While this was the most relevant course for me, I missed how it was focused on "helper functions" instead of core RNN concepts. While I feel like I understand concepts like the Bleu score, I would definitely need to spend more time to fully grasp the RNN architecture.
By George B
•Jul 19, 2021
Good introduction into NLP and Sequence models in general. Too many things are done for you in order to fit this course into 4 weeks. I felt like I could not say that I built a system doing something. It was pre-built, while I just filled in some portions of code.
By Jeff M
•Oct 4, 2020
Very nicely put together, takes a difficult topic and gives you just enough to get your head around it. Only thing keeping it from 5 stars is that a few times it was more difficult to figure out what the auto grader wanted than what was needed to complete the topic
By Alexander
•Jan 24, 2019
Would have been nice to get more extensive training in Keras en Tensorflow because programming excercies were somewhat too pre-compiled at times or other times difficult to code because of scarse knowledge of these packets. Otherwise great lecture material as usual
By Vidar I
•Mar 22, 2018
This was a great course and teaches you everything you need to know about RNN to get started doing your own research. With background in economics and finance it would have been nice to have one small assignment with time series data. Beside that, awesome course :)
By Oumayma G
•Nov 2, 2020
Thank you for this course. The content is very throughout and yet explained simply. I had a hard time with understanding the attention model, the explanation in the course is not enough, but after all, it is a complicated architecture. The labs help. Thank you.
By Sourish D
•May 28, 2018
The grader has some bug.Even with correct output and with no bug in the code, it gives incorrect grading. Firstly the criteria to pass is so stiff(80% means to pass for every function).Secondly the bug in grading function grades incorrect for correct codes.
By Sherif M
•May 3, 2019
Andrew Ng does a great job in introducing Sequence models in this course. However, I have the feeling the theory behind all the concepts falls short. There are just too many different subtopics being covered instead of focusing on the main concepts of RNNs.
By Volker B
•Sep 21, 2023
Great course, it will help much to be more creative using deep learning within own projects. But the last week about transformers could have been more detailed/in-depth - leaving with the feeling having some "gaps" there, especially regarding the math.
By Harish K L
•Oct 15, 2020
Compared to the previous 4 courses in this specialization, I felt this course a bit less on details. It may be just me not having the required level of understanding. It just felt like I could've used a little more details. Andrew is awesome as always.
By Daniel S
•Aug 30, 2020
The programming assignments were pretty hard this time. I think, Andrew should spend more time to explain the concepts in the video lectures. Took me a while to get this stuff since it is a little bit more abstract than the previous specializations..