Chevron Left
Back to Machine Learning Foundations: A Case Study Approach

Learner Reviews & Feedback for Machine Learning Foundations: A Case Study Approach by University of Washington

4.6
stars
13,492 ratings

About the Course

Do you have data and wonder what it can tell you? Do you need a deeper understanding of the core ways in which machine learning can improve your business? Do you want to be able to converse with specialists about anything from regression and classification to deep learning and recommender systems? In this course, you will get hands-on experience with machine learning from a series of practical case-studies. At the end of the first course you will have studied how to predict house prices based on house-level features, analyze sentiment from user reviews, retrieve documents of interest, recommend products, and search for images. Through hands-on practice with these use cases, you will be able to apply machine learning methods in a wide range of domains. This first course treats the machine learning method as a black box. Using this abstraction, you will focus on understanding tasks of interest, matching these tasks to machine learning tools, and assessing the quality of the output. In subsequent courses, you will delve into the components of this black box by examining models and algorithms. Together, these pieces form the machine learning pipeline, which you will use in developing intelligent applications. Learning Outcomes: By the end of this course, you will be able to: -Identify potential applications of machine learning in practice. -Describe the core differences in analyses enabled by regression, classification, and clustering. -Select the appropriate machine learning task for a potential application. -Apply regression, classification, clustering, retrieval, recommender systems, and deep learning. -Represent your data as features to serve as input to machine learning models. -Assess the model quality in terms of relevant error metrics for each task. -Utilize a dataset to fit a model to analyze new data. -Build an end-to-end application that uses machine learning at its core. -Implement these techniques in Python....

Top reviews

PM

Aug 18, 2019

The course was well designed and delivered by all the trainers with the help of case study and great examples.

The forums and discussions were really useful and helpful while doing the assignments.

BL

Oct 16, 2016

Very good overview of ML. The GraphLab api wasn't that bad, and also it was very wise of the instructors to allow the use of other ML packages. Overall i enjoyed it very much and also leaned very much

Filter by:

2176 - 2200 of 3,143 Reviews for Machine Learning Foundations: A Case Study Approach

By 002_Abdul B

•

Jul 14, 2021

good

By Sayan P

•

Jun 24, 2021

good

By Atanu M

•

May 15, 2021

good

By BE_10_LoKesh B

•

May 14, 2021

good

By K.JOSEPH V

•

Apr 26, 2021

nice

By Aruzhan D

•

Mar 8, 2021

cool

By Amber G

•

Feb 9, 2021

good

By Anmol S

•

Jan 11, 2021

good

By TATICHARLA M B

•

Dec 17, 2020

JHUY

By Karan S C

•

Nov 17, 2020

Good

By V D

•

Nov 16, 2020

good

By MODANI H

•

Oct 31, 2020

Good

By Sasisrivundavilli

•

Oct 31, 2020

GOOD

By YOKESH K R

•

Oct 17, 2020

nice

By Rashmi B

•

Oct 13, 2020

Good

By Rabeya T S

•

Oct 11, 2020

Good

By Stylishstar R

•

Oct 9, 2020

Nice

By ahmed k

•

Sep 22, 2020

Good

By SWETHA A S

•

Aug 20, 2020

Good

By TALLURI

•

Aug 15, 2020

Nice

By SRIBIN S

•

Aug 6, 2020

nice

By Jaladi N

•

Aug 2, 2020

good

By Vimonisha.a

•

Jul 28, 2020

good

By Sakshi U

•

Jul 24, 2020

good

By MOHD J A

•

Jul 24, 2020

nice