Chevron Left
Back to Mathematics for Machine Learning: PCA

Learner Reviews & Feedback for Mathematics for Machine Learning: PCA by Imperial College London

4.0
stars
3,106 ratings

About the Course

This intermediate-level course introduces the mathematical foundations to derive Principal Component Analysis (PCA), a fundamental dimensionality reduction technique. We'll cover some basic statistics of data sets, such as mean values and variances, we'll compute distances and angles between vectors using inner products and derive orthogonal projections of data onto lower-dimensional subspaces. Using all these tools, we'll then derive PCA as a method that minimizes the average squared reconstruction error between data points and their reconstruction. At the end of this course, you'll be familiar with important mathematical concepts and you can implement PCA all by yourself. If you’re struggling, you'll find a set of jupyter notebooks that will allow you to explore properties of the techniques and walk you through what you need to do to get on track. If you are already an expert, this course may refresh some of your knowledge. The lectures, examples and exercises require: 1. Some ability of abstract thinking 2. Good background in linear algebra (e.g., matrix and vector algebra, linear independence, basis) 3. Basic background in multivariate calculus (e.g., partial derivatives, basic optimization) 4. Basic knowledge in python programming and numpy Disclaimer: This course is substantially more abstract and requires more programming than the other two courses of the specialization. However, this type of abstract thinking, algebraic manipulation and programming is necessary if you want to understand and develop machine learning algorithms....

Top reviews

WS

Jul 6, 2021

Now i feel confident about pursuing machine learning courses in the future as I have learned most of the mathematics which will be helpful in building the base for machine learning, data science.

JS

Jul 16, 2018

This is one hell of an inspiring course that demystified the difficult concepts and math behind PCA. Excellent instructors in imparting the these knowledge with easy-to-understand illustrations.

Filter by:

501 - 525 of 776 Reviews for Mathematics for Machine Learning: PCA

By Chow K M

Jul 28, 2020

Quite challenging. Need to keep notes for programming assignment.

By Lafite

Feb 4, 2019

编程练习的质量不够高,不管是编程练习本身的代码逻辑、注释、练习的质量还是在答疑区课程组的答疑都不能尽如人意,对于编程练习并不很满意

By Attili S

Aug 19, 2020

Great course! It could have elaborated more in the week 4 PCA

By Chenyu W

Jul 24, 2021

feels like it progresses too fast. otherwise great content

By Ashok B B

Feb 6, 2020

Course was challenging , but learned the maths behind PCA,

By Paul C

Dec 23, 2018

Good content, just need to fix the assignments' platform.

By Rohit R

Nov 13, 2024

It was a good experience learning this course. Thank you

By MARCELO S C C

Oct 22, 2024

Not 5 stars because are errors in the automatic grading.

By Mohamed F

Sep 30, 2022

Excellent course, but the last assignment wasn't obvious

By Dave D

May 30, 2020

This course was a fair overview of a very complex topic.

By ADITYA K

May 13, 2020

It is very informative and hands-on based Course for PCA

By Saiful B I

May 4, 2020

Not as good as the other two courses..but interesting!

By Sharon P

Sep 24, 2018

Mathematically challenging, but satisfying in the end.

By Paulo Y C

Feb 11, 2019

great material but explanation are a little bit messy

By Anas E j

Jun 19, 2022

Thank you for this course , hope to learn more !

By Wd E

Feb 21, 2021

Good course, but requires mathematical background

By taeha k

Jul 27, 2019

Good but slightly less deeper than the other two

By Eddery L

May 24, 2019

The instructor is great. HW setup sucks though.

By Muhammad B A

Mar 26, 2023

its was soo hard your background not from math

By manish c

May 6, 2020

Best course for machine learning enthusiast

By Thijs S

Sep 28, 2020

The last assignment could use improvement.

By andre w

Mar 27, 2022

a really good course but also really hard

By J N B P

Sep 10, 2020

Good for intermediates in linear algebra.

By Romesh M P

Jan 16, 2020

Too much non-video lectures (lot to read)

By Apriandi R A

Mar 26, 2023

Overall very fun and make a little dizzy