Chevron Left
Back to Exploratory Data Analysis for Machine Learning

Learner Reviews & Feedback for Exploratory Data Analysis for Machine Learning by IBM

4.6
stars
2,063 ratings

About the Course

This first course in the IBM Machine Learning Professional Certificate introduces you to Machine Learning and the content of the professional certificate. In this course you will realize the importance of good, quality data. You will learn common techniques to retrieve your data, clean it, apply feature engineering, and have it ready for preliminary analysis and hypothesis testing. By the end of this course you should be able to: Retrieve data from multiple data sources: SQL, NoSQL databases, APIs, Cloud  Describe and use common feature selection and feature engineering techniques Handle categorical and ordinal features, as well as missing values Use a variety of techniques for detecting and dealing with outliers Articulate why feature scaling is important and use a variety of scaling techniques   Who should take this course? This course targets aspiring data scientists interested in acquiring hands-on experience  with Machine Learning and Artificial Intelligence in a business setting.   What skills should you have? To make the most out of this course, you should have familiarity with programming on a Python development environment, as well as fundamental understanding of Calculus, Linear Algebra, Probability, and Statistics....

Top reviews

HV

Nov 10, 2024

With my background on probability and statistics, I think this is a good course, where it can help me apply what i have learned. Not recommend for any one who hasn't taken a statistics course before.

AE

Sep 26, 2021

Very detailed course of Exploratory Data Analysis for Machine learning. Ready to take the next step in data science or Machine learning, this is great course for taking you to the next level.

Filter by:

401 - 423 of 423 Reviews for Exploratory Data Analysis for Machine Learning

By Max M

Sep 7, 2023

One of the most significant drawbacks of the course was the instructor's reliance on slides as a reading tool rather than a teaching aid. The slides presented the information in a rather static and passive manner, which made it difficult for me , to engage with the material effectively. Instead of actively demonstrating the application of formulas and concepts, the instructor merely read the text on the screen, leaving us to decipher the practical aspects on our own.

This approach posed several challenges. First and foremost, it hindered our understanding of the material. Exploratory Data Analysis (EDA) is a hands-on process that requires practical application, and it's crucial to see how formulas and concepts are applied in real-world scenarios. Unfortunately, the course did not provide sufficient guidance in this regard.

Moreover, this teaching method made it challenging to maintain focus and engagement throughout the course. It's difficult to stay engaged when the instructor's presentation primarily consists of reading text from slides. It would have been much more effective if the instructor had actively demonstrated how to use the formulas and provided examples that allowed us to see EDA in action.

To enhance the course and improve the learning experience, I would strongly recommend that the instructor adopt a more interactive and practical approach. This could involve incorporating hands-on exercises, real-world case studies, or live demonstrations of EDA techniques. Providing opportunities for students to actively apply what they've learned would undoubtedly lead to a more engaging and effective learning experience.

By Oleg O

Mar 25, 2022

This course is too surface. You must have a solid background in statistics and be familiar with pandas/numpy python libraries, otherwise you will spend a lot of time just to learn these libs. Also there is some basic info in lectures but assignments contain much complex and harder tasks which were not discussed in the lecture. And the tasks already have answers , so there are questions and solutions in one place, it is very weird and annoying

By Chris R

Apr 15, 2023

Note enough exercisese. In fact there really were almost no exercises, except in the Honors section (the optional 5th week - a peer reviewed project).

Lectures were too fast and not always clear. Ambiguous language was frequently used. I believe the instructor does know the subject, but there is too much glossing over. Going to look for a better class with more exercises and clearer definitions.

By Stephen C

Jan 3, 2022

Frankly, the presenter is a poor educator and the course materials are weak. The examples are limited, some explanations verge on incorrect (description of p-values), and several of the graded test questions are ambiguous and encourage rote learning of the teacher's preference/positions, rather than testing the underlying concepts. I expect better from IBM.

By Mpho M

Dec 1, 2020

Course videos are way too long.

No Jupyter support, so for the coding exercise one has to download the notebooks and either use Google Colab or locally installed Jupyter notebook.

By Sayan M

Feb 25, 2023

The explanation from mentor in this course was not that great. It felt like he was just reading some lines from an script, rather than explaining in simple terms.

By Walter B

Jun 14, 2021

The course starts well. Then it goes to statistics and not so much to machine learning. The assignment is not so geared towards machine learning.

By Agban o

Sep 1, 2023

the lecture seemed difficult to follow. i wish things where better explained. had to go back and take some other courses to enable me catch up

By basilis s

Apr 8, 2024

Not a very good understanding of all the concepts. The tests had concepts that weren't explained in the videos correctly.

By Yazan K

Aug 21, 2024

the instructor didn't actually explain this course very well and I find it too hard to to understand a lot of things

By Arshad R

Jul 9, 2024

Very vague - Un clear instructions - hard to follow - hard to understand the speaker.

By Shahbaz A K

Oct 5, 2023

Does not cover basics in depth or with any clarity.

By Carlos M

Jun 6, 2024

Se explica con poca profundidad cada tema

By HAMZAH A

Dec 27, 2022

Not explained very well

By ValidaR

Dec 19, 2024

Lack of information

By Zahra B

Jan 1, 2025

This course was a challenging experience, and I struggled to follow the instructor. The quality of the content was poor, with numerous references to unclear terms that were not explained adequately. The instructor mostly read directly from a presentation, adding little to no additional value. Without studying the material elsewhere, I would have been unable to grasp many of the concepts introduced. Overall, it was a disappointing experience, and I cannot recommend this course. Please, IBM, take the time to review and improve this course to ensure it meets the standards learners expect.

By Renan d B L

Jun 28, 2024

The instructor does not have good teaching skills, and the classes do not convey the knowledge intuitively. I recommend that students take the courses from DeepLearning.AI, as they are much better.

By Emrah I B

Apr 16, 2024

its only a video showing how it works, there is so much stuff but we are not able to learn by doing instead we just need to listen and at after some time it gets boring and difficult to understand

By spandan c

Dec 6, 2024

The audio in this course was corrupted, I went through a couple of modules and could not hear the details properly so had to discontinue.

By Sinan, A R

Sep 27, 2024

poor instructor. rushed material. the slides were low quality

By Tuấn V A

Jan 8, 2025

i've got my coursera plus free trial but can not get cert

By MARILIA F

Aug 4, 2023

ainda não entendi o que é machine learning

By Lawrence P

May 6, 2024

need case studies