PD
Mar 16, 2016
I really enjoyed all the concepts and implementations I did along this course....except during the Lasso module. I found this module harder than the others but very interesting as well. Great course!
KM
May 4, 2020
Excellent professor. Fundamentals and math are provided as well. Very good notebooks for the assignments...it’s just that turicreate library that caused some issues, however the course deserves a 5/5
By Phil B
•Jan 29, 2018
This was the deep dive into regression that I was looking for, learning how and why to implement the various different algorithms that are used without being tied to a specific software package. Some of the other reviews complain about the use of graphlab but really it has no impact on the value of the course, because you can literally write the functions from scratch yourself using standard python and Numpy. The use of graphlab is just to speed things up in some of the programming assignments. One or 2 of the quizzes had some incorrect values in the notebooks but a quick search of the forums showed the correct ones and the ability to reattempt the quizzes means it's not a big issue. Emily is an excellent lecturer and the constant use of graphical aids and annotations makes it very easy to follow even with some of the fairly advanced maths.
By David M
•Sep 7, 2017
I enjoyed this course. I took Ng's original ML coursera course, and it was good, but this one was much more involved and helped me better understand essential concepts in machine learning and data science. I feel confident that I can apply the skills I have learned in this course to future applications. While the lecturer sometimes repeated herself, she did well to explain some of the more difficult concepts. I would recommend this to anyone who wants a better grasp of statistics and regression analysis. The only thing I found lacking was that there was no exploration of forecasting, extrapolation, or otherwise making predictions beyond the boundaries of the training data. I feel like this is an important skill, and believe it could have been included among what was covered here.
By Sean S
•Feb 18, 2018
I really enjoyed this course. Emily is an excellent instructor and the material was well planned and straightforward to follow. The programming assignments were useful and I got a lot out of implementing the algorithms from (near) scratch. I would have liked to see SVR and ensemble methods as part of this class but I understand they will be covered in another course. I used graphlab for all of the assignments but I also used numpy and and pandas when I couldn't find the functions I was looking for in graphlab. I was not a fan of the coursera hosted notebooks with graphlab for the first course but running it off my own machine was a different experience and I could definitely be sold on a single solution in place of numpy, pandas, and scikit learn.
By Craig B
•Nov 29, 2016
A well thought out and nicely paced introduction to Regression following on from the equally good foundation course. I particularly like the way that the assignments assume an improving knowledge and familiarity with Python as the course progresses. It will be interesting to see if the subsequent courses in the specialisation continue in this vein - I hope so. I note the concerns that some have expressed about the use of graphlab.create for examples and assignments, but tend to think there is benefit from gaining familiarity with a number of different data science ML tools and libraries. Also additional code and instructions are available for those determined to use other tools such as Pandas and Scikit Learn.
By Josiah N
•Sep 28, 2016
Nice explanation of concepts, and very helpful with getting started on the programming assignments. The algorithms are explained well in pseudo code, and the instructor does a good job at explaining why they work the way they do. The math is not very challenging, so I never felt frustrated.
I only wish there was not such an emphasis on Graphlab. Although they do allow you to use other methods to finish the assignments, it feels as though more attention is given to explaining how Graphlab works instead of standard, free python libraries. I understand that they're trying to push a product, but I don't want to pay for something I'll only be using for a few courses. More attention should be given to sklearn.
By MARIANA L J
•Feb 27, 2016
Pros: the instructors and TAs seem to have better experience to manage the course, the lectures are extremely well explained and are very enjoyable, all the lectures last less than 15 minutes, there are some advanced optional videos that are interesting and they are not needed to complete the assignments, the numpy tutorial provided is helpful for the assignments, the programming assignments emphasize the need for testing our code (which is one of the most important skills any developer should have).
Cons: The written instructions on the programming assignments are still a bit confusing sometimes and may need a review for future iterations of this course.
By Rahul B
•Feb 6, 2016
Can't praise enough!
This IS THE COURSE for regression. Cannot believe I didn't stumble upon it earlier enough.
Great Specialization, Great Course, Great Professors, Great thought provoking Quizzes and assignments, helpful mentors and more important that any of the above, amazing comprehensive content covering each and every topic from simple linear regression to feature selection and going all the way to kNN Regression.
An enjoyable and great learning experience.
Hope to carry on the same level of enthusiasm through the rest of the specialization.
Thank You Emily, Carlos, Johan (mentor) and rest of my classmates. And of course, Thank You Coursera.
By Edward F
•Jun 25, 2017
I took the 4 (formerly 6) courses that comprised this certification, so I'm going to provide the same review for all of them.
This course and the specialization are fantastic. The subject matter is very interesting, at least to me, and the professors are excellent, conveying what could be considered advanced material in a very down-to-Earth way. The tools they provide to examine the material are useful and they stretch you out just far enough.
My only regret/negative is that they were unable to complete the full syllabus promised for this specialization, which included recommender systems and deep learning. I hope they get to do that some day.
By Benoit P
•Dec 29, 2016
This whole specialization is an outstanding program: the instructors are entertaining, and they strike the right balance between theory and practice. Even though I consider myself quite literate in statistics and numerical optimization, I learned several new techniques that I was able to directly apply in various part of my job. We really go in depth: while other classes I've taken limit themselves to an inventory of available techniques, in this specialization I get to implement key techniques from scratch. Highly, highly recommended.
FYI: the Python level required is really minimal, and the total time commitment is around 4 hours per week.
By Toby P
•Jan 18, 2016
A very challenging course, but one that provides you great insights. This class focuses on the algorithms of regression and various optimization techniques. The iPython (Jupyter) notebooks lead one though solving the various problems, and luckily I have enough Python background and sufficient mathematical intuition to complete the course. Those without either would probably find the course extremely difficult, but not impossible.
I'm leaving the course with an excellent understand of how regression works, and how I can use Lasso and Ridge regressions to improve my predictions. This class is one of the best that I've taken on Coursera.
By Ed M
•Feb 20, 2016
The course is well paced, well organized, and employs a rigorous curriculum design that builds idea upon idea. Issues are well motivated and those motivations are used consistently throughout. Unlike other courses I have taken that attempt a survey across a number of areas, this course dives deep into the important topics in regression. The reward is a more thorough understanding of the theory, mathematics, utility, trade offs and implementation details of various algorithms. Moreover, the individual ideas are tied together in an overarching machine learning work flow that applies to many areas and tasks in machine learning.
By Hans H
•Jun 11, 2018
Alot of information and math, great pragmatic approach in this course. I´m a Little dissapointed that the Multivariate outputs Y where and as I understood is not covered in this Courses, I would like to use that at work to predict several values. The quiz questions was a Little bit tricky, I misunderstood the questions and answered on the wrong data set. Overall the course was not easy and I needed to put in alot of hours to get the coding correct, so be ready to put down some hard work (if you are a slow Learner like me :) ). Anyway great course! And I will jump directly to the next course with Emliy and Carlos.
By Roger S
•Feb 12, 2016
Very, very good course, high-quality teaching, and well-developed quizzes and assignments. The course is challenging enough to feel motivated and satisfied when finishing a week's work, but not so challenging as to scare people (or me, at least) away. I hope (and trust) that you keep up the good work in the courses to come. If there was one thing I could change, it would be to include a discussion of statistical significance/inference (as suggested by Emily towards the end). It is unclear now how that can be analyzed in the Graphlab environment, even though it is a very important topic for practical purposes.
By courage s
•Sep 11, 2018
Emily Foxx's teaching methods in this course are the bomb. She does not give you code hints as Carlos Guestrin would, but rest assured she breaks the concepts down to basic learning blocks and does a pretty neat job at connecting the dots between blocks to present a holistic picture of the course.
I called out her name countless times trying to wade through the programming tasks. Guess that worked for me many times as I imagined her tutoring me in a PhD class and breathing down my neck to meet deadline on pay resit fees (akin to Coursera subscription charges).
Overall, 7-Star Course and Teaching Methods.
By Lu E
•Oct 21, 2017
I loved this specialization very much !!! Emily and Calors are always very passionate and humor. In this regression course, I have learned a lot of algorithms, which make me understand how the regression functions in the first course( Machine Learning Foundations: A Case Study Approach ) work. Especially, I could contruct a function now by myself. It is really really exciting !!! Emily makes a good job to do some visiualization to make the algorithms comprehensible. But this course is kind of difficult for me and sometimes I need to watch a video so many times to understand an algorithm.
By Happy-Learner
•Jan 17, 2016
I saw a number of machine courses that are with too general contents and more like conference presentations. It's hard to learn and grasp something from them. However this is a real Machine Course that provides informative, appropriate details and derivations from which I can learn and understand the meaning and insights buried in math symbols and equations. No doubt, the optional video lectures are excellent enhanced "nutrition." Looking forward to the three courses in this specialization. Thanks, Profs. Emily Fox and Carlos Guestrin, for instructing such wonderful authentic courses.
By Mark C H
•Jan 3, 2016
Emily did a great job and presented this course in a very clear manner. I'm in the specialization primarily for the applications of regression tools and not as much for the mathematical theory. But I have to admit, I found it very helpful when Emily went into the proofs and theory behind tools such as gradient descent. She did this in a in a straightforward manner and it ultimately helped me understand the applications better. Carlos and Emily's visual 'movie' of the Lasso convergence was also extremely helpful. I'm very much looking forward to the next course in the specialization.
By Grace P
•Jan 7, 2016
This is an excellent course. The instructors are very likeable. Each module follows the same outline 1) build intuition with simple graphs 2) introduce the matrix operations geometrically with some clever graphics 3) a rigorous mathematical discussion 4) playing with the functions in an ipython notebook especially focusing on hyperparameters, 5) implementing the regression equations in your choice of programming language. As much as I love Andrew Ng's Machine Learning course, you could take this sequence instead and get more explanation with the same mathematical rigor.
By Paul C
•Aug 13, 2016
This Machine Learning class and the rest of the Machine Learning series from the University of Washington is the best material on the subject matter. What really sets this course and series apart is the case-base methodology as well as in-depth technical subject matter. Specifically, the step through coding of the algorithms provides key insight that is seriously missed in other classes even in traditional academic settings. I highly encourage the authors and other Coursera publishers to continue to publish more educational material in the same framework.
By Michael B
•Feb 29, 2016
Excellent course on the use of regression in machine learning. It does not simply stop with simple linear regression but also tackles ridge and lasso regression using Python notebooks. One big advantage for those not familiar with Python is that the Python notebooks have just enough boiler plate code to make it feasible for Python beginners but not so much that the challenge is gone. The lectures can feel rather technical at times but this, at least in my mind, enhances the course and at no point did I feel I was "drowning" in formulas.
By Ahmed A
•Nov 30, 2015
I was only able to complete week 1 to week 3 thoroughly, and random check on other weeks due to limited time at my disposal at this moment.
In general, I found the course to be very interesting and an excellent introduction to building predictive models . Particularly , i appreciate the way mathematical formulations was explained to carry along beginners in this areas.
Nonetheless, I would suggest that the general notation slide in week 2 should include concrete data example in a table to explain the notations ie. x[j], xi[j], etc
By Ryan M
•Mar 12, 2016
I enjoyed the first course in the series, but was slightly worried the specialization would all be too focused on the GraphLab product specifically. This course is proving that Carlos and Emily intend for us to truly understand the concepts and algorithms behind machine learning. For anyone on the fence that is concerned about this, you will learn how to implement machine learning in ANY package. In fact you will learn how to do it with no package at all! Thanks so much to Carlos and Emily and the Coursera staff, this is great!
By Yamin A
•Feb 10, 2019
Excellent course that is the second in this specialization. It goes beyond the Foundations course and delves further into utilizing machine learning with regression based methods. The course also uses Python. There is some requirement that you should have some degree of familiarity with programming, although you can pick up some skills in coding in Python even if you are not familiar with it (- I wasn't familiar with Python much, although I am familiar with other languages).
Overall, highly recommended.
By Norman O
•Feb 12, 2018
This was a great course. There were a few issues I think with some of the quiz questions and some of the lecture material. However, considering how complex these concepts are, the material was very clearly conveyed overall; and the assignments were very helpful. There seem to be a number of these types of specializations available on Coursera; and they all seem really good. However, I started out with the University of Washington machine learning specialization and haven't looked back. Well done!
By Vaidas A
•Feb 7, 2016
This course is great! I had a lot of fun going through the exercises and concepts they show are really relevant. I am not sure about the level of the whole series, as it probably is more towards beginner than intermediate, but it's great to get some practice with Python and learn / brush-up / deepen knowledge in ML.
I am really looking forward to the next class - that's probably the area I would like this series to improve, the gaps between courses are just too long.
Overall great work!
Thanks!