Chevron Left
Back to Natural Language Processing in TensorFlow

Learner Reviews & Feedback for Natural Language Processing in TensorFlow by DeepLearning.AI

4.6
stars
6,495 ratings

About the Course

If you are a software developer who wants to build scalable AI-powered algorithms, you need to understand how to use the tools to build them. This Specialization will teach you best practices for using TensorFlow, a popular open-source framework for machine learning. In Course 3 of the DeepLearning.AI TensorFlow Developer Specialization, you will build natural language processing systems using TensorFlow. You will learn to process text, including tokenizing and representing sentences as vectors, so that they can be input to a neural network. You’ll also learn to apply RNNs, GRUs, and LSTMs in TensorFlow. Finally, you’ll get to train an LSTM on existing text to create original poetry! The Machine Learning course and Deep Learning Specialization from Andrew Ng teach the most important and foundational principles of Machine Learning and Deep Learning. This new DeepLearning.AI TensorFlow Developer Specialization teaches you how to use TensorFlow to implement those principles so that you can start building and applying scalable models to real-world problems. To develop a deeper understanding of how neural networks work, we recommend that you take the Deep Learning Specialization....

Top reviews

FQ

Oct 26, 2023

I already had some theoretical background from the Deep Learning Specialization from Andrew Ng, but with this course, I feel much more confident about building real-world applications with TensorFlow.

GS

Aug 26, 2019

Excellent. Isn't Laurence just great! Fantastically deep knowledge, easy learning style, very practical presentation. And funny! A pure joy, highly relevant and extremely useful of course. Thank you!

Filter by:

1001 - 1002 of 1,002 Reviews for Natural Language Processing in TensorFlow

By Jason M

•

Jul 2, 2021

No graded programming exercises in this course!!!

By Ritayan G

•

Sep 21, 2020

Not much lectures not much exercises.