Chevron Left
Back to Convolutional Neural Networks

Learner Reviews & Feedback for Convolutional Neural Networks by DeepLearning.AI

4.9
stars
42,354 ratings

About the Course

In the fourth course of the Deep Learning Specialization, you will understand how computer vision has evolved and become familiar with its exciting applications such as autonomous driving, face recognition, reading radiology images, and more. By the end, you will be able to build a convolutional neural network, including recent variations such as residual networks; apply convolutional networks to visual detection and recognition tasks; and use neural style transfer to generate art and apply these algorithms to a variety of image, video, and other 2D or 3D data. The Deep Learning Specialization is our foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. It provides a pathway for you to gain the knowledge and skills to apply machine learning to your work, level up your technical career, and take the definitive step in the world of AI....

Top reviews

AV

Jul 11, 2020

I really enjoyed this course, it would be awesome to see al least one training example using GPU (maybe in Google Colab since not everyone owns one) so we could train the deepest networks from scratch

RK

Sep 1, 2019

This is very intensive and wonderful course on CNN. No other course in the MOOC world can be compared to this course's capability of simplifying complex concepts and visualizing them to get intuition.

Filter by:

5301 - 5325 of 5,619 Reviews for Convolutional Neural Networks

By David

•

Aug 19, 2018

Not as great as the previous three courses. The exercises here are much more challenging than before, but not always for the right reasons. A thorough primer on Tensorflow should be made mandatory in this course. A lot of the time you eventually manage to complete the exercises without really knowing what you are doing. The subject matter in this course is also more complex than in previous courses, so more attention needs to be put on really making students understand the fundamentals thorougly. Also, sometimes buggy or inexplicable grader output. Andrew Ng is still a great instructor though.

By Mike L

•

Nov 17, 2017

I have been a big fan of the series. I think it is a must-take series. I took this course when it was freshly released. The materials and programming assignments were quite good from week 1 to 3. However, the week 4 programming assignment was not ready. I encountered a few issues in the autograder and test data loading. I burned some time tracking down them. Fortunately my fellow classmates were very helpful in the forum. I am sure all problems would be solved in coming weeks. Just keep a mental notes.

Having said that, the materials is worth the pain. Go take it!

By Jonathan S Y P

•

Dec 15, 2019

La verdad este curso no me gustó mucho porque fue demasiado teórico y habían partes que uno se perdía de tantas formulas... por ejemplo en la tercera semana había una parte de la formula que decía 3x3x8 y como a los 6 vídeos siguientes, explicaron a que correspondía el valor de 8 (Si se hubiera explicado eso desde el primer vídeo hubiera sido más claro todo desde el principio). Este tipo de temas me parece que es más interesante verlo como un tutorial; donde a medida que se va explicando teoría, se va mostrando como hacerlo en x lenguaje, ya sea, python, c# u otro.

By Foad O

•

Nov 2, 2021

The course is pretty good overall. However, the programming assignments need much improvement. I realize that teaching Python syntax and programming is not really part of this course, but if students are expected to do coding, there needs to be some more detailed lessons/sections to cover the basics. While providing vague, inconsistent and riddle-like "hints" in the middle of the programming exercises make for some interesting brain exercises, they are certainly not helpful at teaching the students what they need to know in order to write correct code.

By Rahul G

•

Aug 18, 2021

Wonderful course by Dr. Andrew Ng but it would be even better if the course offered EXECUTION EXERCISES following Google AI courses (see below)

https://developers.google.com/machine-learning/crash-course/introduction-to-neural-networks/playground-exercises)

Since many of us want to learn the course material and EXECUTE COMMERCIAL (or SEMI COMMERCIAL CUSTOMIZED) CODES and NOT INTERESTED in PROGRAMMING/CODING please provide GUI driven online execution modules INSTEAD OF PROGRAMMING EXERCISES !

Thanks,

Rahul Gupta rahulgupta2020@gmail.com

By Amod J

•

Mar 18, 2018

Really liked the course content but the true learning was in the homeworks that had the implementation details. After completing the course I was unable to download my own completed assignments as the course assignments were locked out for me. I don't want to re-submit any of them but I want to download my work to be able to refer to it and learn from it. I can see posts in the forum asking me to download them when the next session of the course becomes available, but I cannot afford to keep on paying ~ $50 subscription until it does.

By Mark P

•

Dec 9, 2017

The content covered is excellent as with the other courses.

However the material in this videos etc have many editing glitches. In addition some of the notebook based programming assignments are misleading and have minor errors that caused auto-grader issues.

In addition the programming assignments seem to be dumbing down. You spend lots of timing solving syntactic nuances of tensorflow, Keras etc rather than being asked to solve cerebral problems that help understanding of the concepts.

By Grant G

•

Jan 28, 2018

This covers hugely important information and really deserves five stars, but it is fundamentally clumsy. Even leaving aside the unprofessional disaster that is the week 4 assignment 2 grader, the difficulty level is all over the place and the description of the style transfer is borderline incomprehensible (possibly because Prof. Ng is trying to soft-pedal the linear algebra?)

Coursera, Prof. Ng, please take a second look at this one. It needs -- and deserves! -- better work.

By Jalaz K

•

Nov 23, 2018

Assignments really need to be improved. Of all the courses in this specialization, this particular course frustrated me a bit. Thanks to the discussion groups, I was able to sail through.

Moreover, Grader should provide the summary of error in our submission rather than just showing wrong submission. Course Material was really good. 5 on 5 for that part, but the assignments really troubled me and others as well, as can be easily seen in the discussion groups.

By Andreas B O

•

Jan 17, 2020

Lectures were great. The descriptions for all applied operations, algorithms, etc. by Andrew are excellent. However, the Programming Assignments this time around demanded a lot of looking up TensorFlow and Keras functions (even during the Keras Tutorial). Especially Week 3 was a struggle for me. At some point, the framework simplicity is turned into rather harsh complexity. A better explanation of what TensorFlow/Keras commands to would be of advantage.

By Asif I

•

Dec 23, 2017

First of all, thank you for providing such a rich content.

I know its hard to strike a balance between covering content and "actually" delivering them to the student. Course #3 and especially #4 felt very rushed when it came to the exercises. The tensorflow concepts that came back out of nowhere and solutions would have been nearly impossible without the copious hints.

PS: Course 4 "happy house" face recognition assignment was choke full of bugs.

By Nitin S

•

Jul 1, 2020

Very good introduction to concepts on Convolution Networks. It would have been great to put more emphasis on how actual models like "FRmodel" are trained vs tested. E.g it would be great to provide information on the fact that 3 parallel networks need to be used that share weights. So more exposure to practical aspects of implementation would be useful. Essentially a lot more time can be spent on exercises than what is meant for them

By Vahid

•

Nov 7, 2020

Unlike other courses in this specialty, this course was primarily focused on describing some specific methods/approaches (which happened to be very popular) rather than describing high-level concepts. At some points, I had a feeling that the course material reads more like a journal club. While journal clubs can be very useful, I preferred more if this course was mostly focused on overall/generic concepts.

By Michele T

•

Apr 5, 2020

This was an interesting course. It provides a high level look at face recognition/verification and various state-of-the-art aspects of convolutional neural networks. The one thing I found frustrating in this course was the grader. It was very particular for at least one homework assignment on the order in which you entered your variables. I spent way too much time on debugging for simple things like that.

By Matthew C

•

Jun 19, 2018

The content was great, and is probably the best available. However, the grader was so flaky it really shook my confidence in the material. I'm the type of person who will try and try until I'm literally about to give up before I look for help in the forums, so I lost a LOT of time on these exercises. This was by far the WORST of the five courses in the specialization. Sorry to yell, but YOU CAN DO BETTER!

By Samuel R

•

Oct 23, 2020

The Keras and TensorFlow versions used in this course are by now to a large degree outdated. The Newest TF version is at the date of writing 2.3, while the course uses <2.0, so many of the functions used are deprecated in the newer versions

However, Andrew's explanations are great as always except for the convolutional implementation of sliding windows in the 3rd Week. (therefore only 3 stars this time)

By Alan S

•

Nov 19, 2017

Depplearning.AI: Please do not release content unless it is ready. The content is fine, but the assignments were clearly hastily put together and had basic bugs discussed all over in the forums. In particular, week 4 is a complete mess. Boiler-plate code that doesn't even relate student-content (to load a dataset) doesn't even run for many people. This wastes everyone's time. Really disappointing.

By Bjorn E

•

Nov 19, 2019

Overall a great intro to CNNs. But the last part of the course on object detection and facial recognition is very superficial. It explains the logistics of the disciplines (how to keep track of bounding boxes, etc), but it doesn't teach how to actually build such a system. The exercises make you fill in a bunch of indices and do vector math, but deliver the actual hard parts inside black boxes.

By Johannes B

•

Mar 26, 2018

Very good covarage of the algorithms when it comes to analyzing pictures, and a good intro to the theory behind the models. But it is too little emphasis on other uses of convolutional networks like 1d convolutions, causal convolutions and similar. Maybe there are some coverage of these topics in the sequence course in the series, but it should be covered here to a larger extent either way.

By Emanuel D

•

Sep 3, 2020

All video content of this course where great, but i can't say it about programing assignments. YOLO and Neural Style transfer are by my opion advanced topics. I would more appreciate longer programming excersice, not only something where i only add some piece of code and i hardly understand what is going about. For example, convnets were clear, i could implement it by myself, but yolo no.

By Santosh N

•

Jan 3, 2018

Course lectures and questions are very good. The programming assignments are also good questions wise, but the grading mechanism is quite annoying. We had to find out clumsy workarounds to get the correct grading, in one case, the code change needed for getting the correct grade did not result in the expected output. Coursera needs to change the method of grading programming assignments.

By Sinan S

•

Dec 22, 2021

In this course the material/resources regarding Keras is highly insufficient. So far I have made little progress in the programming assignments related to Keras and I achieved this by figuring out stuff by googling which took a long time. If the instructors could extend the course with stuff related to Keras it would be great. At least there should be references to sufficient resources.

By Jayson W

•

Jan 26, 2019

I can't believe the number of technical problems I've had with notebooks not saving my work on homework assignments. It's very frustrating. The content is good and I will continue with the course, but this is the first Coursera course I've had (actually, the whole series in this topic) where I have experienced the lost of work - I just lost about an hour on a homework assignment.

By David C S

•

Jul 16, 2020

I am very annoyed with the evaluation of the notebooks. Not with the content itself, but with the support from instructors, which is non existent.

It took me two days and 10 re-submitions to solve a problem that was unrelated to the code, but to the behavior of the grader system. No one replied my cries for help in the discussions.

Very disappointed with the lack of support.

By Stephen W

•

Dec 7, 2017

The content of the course is very good, as with all the Andrew Ng / deeplearning.ai material. However production standards seem to have slipped for this one. Repeated sections in video material and a final notebook exercise that contained errors and required finding a work around that was posted in a discussion forum. I hope these things can be corrected for others.