Chevron Left
Back to Convolutional Neural Networks

Learner Reviews & Feedback for Convolutional Neural Networks by DeepLearning.AI

4.9
stars
42,349 ratings

About the Course

In the fourth course of the Deep Learning Specialization, you will understand how computer vision has evolved and become familiar with its exciting applications such as autonomous driving, face recognition, reading radiology images, and more. By the end, you will be able to build a convolutional neural network, including recent variations such as residual networks; apply convolutional networks to visual detection and recognition tasks; and use neural style transfer to generate art and apply these algorithms to a variety of image, video, and other 2D or 3D data. The Deep Learning Specialization is our foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. It provides a pathway for you to gain the knowledge and skills to apply machine learning to your work, level up your technical career, and take the definitive step in the world of AI....

Top reviews

AG

Jan 12, 2019

Great course for kickoff into the world of CNN's. Gives a nice overview of existing architectures and certain applications of CNN's as well as giving some solid background in how they work internally.

RS

Dec 11, 2019

Great Course Overall

One thing is that some videos are not edited properly so Andrew repeats the same thing, again and again, other than that great and simple explanation of such complicated tasks.

Filter by:

176 - 200 of 5,619 Reviews for Convolutional Neural Networks

By Travis J

•

May 28, 2018

This was a very decent exploration of how Convolutional Neural Networks are used to solve various computer vision problems. The one complaint I have is that I wish the course wouldn't assume so much familiarity with Tensorflow and Keras frameworks in the assignments. The brief exposure to these frameworks earlier in the coursework is hardly sufficient to prepare one for the later assignments.

By Lukman H

•

Nov 22, 2020

Overall this is a great course. I learnt a lot from this course, whether in conceptual aspect or practical. But I think it would be better if assignment about neural style transfer include model training as well. The training doesn't need to be done in high epochs and large data, using small portion of data and in small number of epochs is enough. Just for practicing how to optimize the model

By Ivan S

•

Feb 24, 2018

Great course, the best CNN explanations I've seen so far on the internet. After finishing the course I have much more deeper understanding of convolutions. It is very helpful that we must code convolution neural network by hands with numpy as it greatly helps to understand the problem. The state-of-the-art examples are very interesting and helpful also. Loved to see Keras and tensorflow here.

By Zhixun H

•

Feb 23, 2018

Definitely 5+ stars. You got some much precious experience to implement those start-of-the-art deep learning applications with so much detailed explanation, supportive peer learners. It's really impossible for anywhere else to provide you this package to learn CNN, INN, YOLO, NST, FaceNet and so on so forth. I'm so grateful for the heart the teaching team pours into this course. Thank you.

By Patricio G

•

Oct 15, 2021

Comencé esta especialización sin conocimientos de deeplearning en absoluto, hoy habiendo finalizado la especialización tengo una basta noción de este mundo tan apasionante. Quiero destacar la facilidad con la que Andrew transmite su conocimiento, es un instructor de otro mundo!. Feliz de haber realizado la especialización y de continuar por este camino. Gracias a Andrew Ng. y a Coursera.

By Lucas G

•

Nov 5, 2017

As in all the previous courses in this specializations, Andrew Ng teaches the basics of neural networks in a clear, easy to understand manner. The programming exercises give nice hands-on examples of how you can apply the models described in the lecture, teaching both how to program the algorithms from scratch, and how to use higher level packages like keras and tensorflow. Great course!

By Brandon K

•

Nov 19, 2017

This was my favorite class of the specialization so far. We've finally built up to the point where we can do some of the sexy things deep learning is known for. I have to say, I'm getting sick of having to submit every assignment 2 or 3 times and waiting for up to 2 hours to see if I passed because the Coursera grader doesn't want to work properly, but that isn't the instructor's fault.

By Edgar A G A

•

Feb 13, 2022

The course is amazing and the topics are quite interesting. I think the explanation about the YOLO algorithm could be slightly better (I have to check out some external resources to catch the idea). Some programming assignments were hard to accomplish due to a lack of clarity about how to use TF. Nevertheless, all the topics covered along the course were really interesting. Thank you!

By Pedro T

•

Aug 20, 2020

Amazing course, with careful explanations and intuitions for every algorithm. Beyond explaining greatly what are Convolutional Neural Networks, the course uses recent research papers to go through high level algorithms for face recognition and presented really nice applications such as Neural Style Transfer. I'd like to really thank the instructors for delivering this amazing course.

By Victor A M B

•

Apr 7, 2020

Es un curso que te enseña los fundamentos, técnicas y variaciones de las CovNets (Redes Neuronales con Convoluciones). Este curso es bastante bueno para introducirse en el mundo del análisis de imágenes y otros campos que utilicen datos no estructurados. Muy recomendado el curso, pero vean primeros los otros cursos de esta especialización para que pueden entender mejor los conceptos.

By Jason D

•

Aug 18, 2019

Another wonderful course in this specialization. The course covers many important topics in the field of Deep Learning such as CNN architecture and models, ResNets, Object Detection, Face Recognition, Neural Style Transfer and even a tutorial on the popular DL library Keras. The programming exercises and fun to complete and the course content is top-notch as always from Prof. Andrew.

By Pablo G G

•

Sep 10, 2020

Awesome CNNs course! I don't know why so many bad reviews, the grader doesn't fail if you follow the instructions (grade your assigment when you are asked!...tensorflow can only run one session so if you try to overwrite your model session with the teacher example session, grader will fail...tensorflow fault not this course) Would have love some GAN Week 5 Neural Style Generation :D

By Sriram V

•

Oct 17, 2019

Programming exercises need to made really with right structure as the YOLO one was very poor. Problems are very easy and makes this course very simple. We need to incorporate right amount of programming along with concepts, make it tough and train us also really well in the ideas. Concepts are absolutely fine, it takes the slow pace to make us understand deeper ideas and intuitions.

By Nelson F A

•

Aug 22, 2019

Excellent course with many hands on examples and filled with important resources on CNN architectures and other best practices. There are many optional reading material that I'm sure to come back too. The only thing missing was a little more insight on backpropagation on CNNs, although an example of it is given in a coding example. This is a course I will be coming back to for sure!

By Ashutosh K

•

Nov 22, 2017

The best part about the course is the focus on understanding the basics. It takes time and effort to learn and follow through the lectures but once you understand the basics clearly, everything else becomes so much easy to understand. Not like some of the courses out there which push you into advanced coding from day 1 and then move backwards to basics, this course is so much better

By Tamim-Ul-Haq M

•

Aug 15, 2020

Really amazing and in-depth course. There is no better course than this to uncover the secrets of Deep Learning in the field of Computer Vision and how to easily utilize, improve and develop these systems. I am truly impressed by the content and by the knowledge I have gained and I doubt any university or other course can match up to Andrew's level of knowledge and teaching method.

By Samuel Y

•

Dec 10, 2019

This course was awesome -- albeit pretty hard. I understood most of the concepts when learning them, but it was easy to forget a lot of the implementational details and such. Dr. Ng does such a good job, nevertheless, both presenting the material (which is straight out of cutting-edge papers) and also offering tips for actual implementation. I plan to make an app after this course.

By Quentin G

•

Aug 9, 2018

Cours très intéressant et d'un niveau bien supérieur aux 3 modules précédents. J'ai vraiment du réfléchir sur de nombreux exercices de programmation pour arriver à mes fins. Merci beaucoup !

Very interesting courses. The difficulty level is very higher than the 3 previous courses. I really had to think everything twice on the programming assignments before submitting. Thanks a lot !

By Rex F

•

Jan 29, 2018

i can't believe i learned so much, can read complex equations and translate them .. it's like a condensed math specialty mixed with learning real-world utilities and tools .. hey, i know from this course how to quickly and (almost) effortlessly prototype recurrent and other deep networks, how cool is that? because of this course i also became a contributor to Keras! yay for me :)

By Roman V

•

Feb 23, 2020

I have become a great fun of deeplearning.ai and Andrew Ng. Thanks a lot of great high quality materials. Going through the specialization I'm falling in love with Deep Learning. I believe historically, deep learning, and especially ConvNets related papers are usually pretty hard to comprehend by simply reading them. This course made it so much more simpler, it is unbelievable.

By Jamie K

•

Dec 23, 2019

Lots of new concepts in this course. I liked the literature review sections and the fact that Andrew starts to show you when it makes sense to pull someone else's model down and use that rather than building something from scratch. The programming exercises were also pretty good - I had to think in a number of places though they are still a little too structured for my liking.

By Najeeb K

•

Aug 24, 2018

A great course providing in-depth theoretical understanding of Convolutional Neural Networks and state of the art model architectures for various Computer Vision tasks. I have been doing Machine Learning from past one and a half years but the course content still gave me wealth of knowledge in a structured format that I yearned for so long. Thanks Prof Andrew and the team! :)

By Rytis J

•

Sep 9, 2022

Introduces you to some of the key models and ideas in deep learning based computer vision (ResNets, inception models, network-in-network, region proposals, anchor box based object detection, semantic segmentation). Offers practical exercises which allow you to test your understanding by building/using these models. The only drawback - assignments have too much handholding.

By Antony A

•

Jan 14, 2020

best course in world or unvierse to understand the basics and complex details of convolutional neural network .i would give an oscar for this course . I was so woried about the complex diagrams that i saw in internet about CNN but this course made it look very easy i was totally suprised how complex details were explained in simple manner .I would recommend this to everone .

By Manjit P

•

Dec 7, 2017

This course covers lot more material and it is more application oriented compared to last three courses. I had to spend lot more time and effort for this one. Also, there are some bugs during submission of the assignments. There is enough discussion about those but I hope Coursera takes care of those in the near future. Nevertheless, I always enjoy Prof. Ng's lucid lectures.