Chevron Left
Back to Data Visualization with Python

Learner Reviews & Feedback for Data Visualization with Python by IBM

4.5
stars
11,905 ratings

About the Course

One of the most important skills of successful data scientists and data analysts is the ability to tell a compelling story by visualizing data and findings in an approachable and stimulating way. In this course you will learn many ways to effectively visualize both small and large-scale data. You will be able to take data that at first glance has little meaning and present that data in a form that conveys insights. This course will teach you to work with many Data Visualization tools and techniques. You will learn to create various types of basic and advanced graphs and charts like: Waffle Charts, Area Plots, Histograms, Bar Charts, Pie Charts, Scatter Plots, Word Clouds, Choropleth Maps, and many more! You will also create interactive dashboards that allow even those without any Data Science experience to better understand data, and make more effective and informed decisions. You will learn hands-on by completing numerous labs and a final project to practice and apply the many aspects and techniques of Data Visualization using Jupyter Notebooks and a Cloud-based IDE. You will use several data visualization libraries in Python, including Matplotlib, Seaborn, Folium, Plotly & Dash....

Top reviews

LS

Nov 27, 2018

The course with the IBM Lab is a very good way to learn and practice. The tools we've learned in this module can supply a good material to enrich all data work that need to be presented in a nice way.

CJ

Apr 22, 2023

Learnt a lot from this visualization course. The one I found most interesting was making the dashboard. Although sometime the code and indentation are tedious, but this might be useful in the future.

Filter by:

1226 - 1250 of 1,872 Reviews for Data Visualization with Python

By ReÅŸat C B

•

Jun 7, 2020

Generally good content with great lab additions except for Folium. Folium 0.5.0 is outdated (it is 0.11.0) now and the choropleth method is deprecated. Also, the final assignment threshold label differs between versions.

By Kenneth C H K

•

Jan 8, 2020

Course content is good. But there're some replication for each video about "recap of the data". The final assignment is quite difficult because I need to find some codes from the internet to meet some task requirements.

By L. F

•

Jul 16, 2020

After learning, I still feel a bit confused. I think it would be better if there is a comprehensive summary, such as: what graphics use which imports, and the comparison between the coding required by each graphic

By Dedunupiti G S K

•

Dec 27, 2022

Good course but some parts need additional explanations to better understand. Anyway, links to additional resources have been provided in complicated areas. So overall helped me a lot to understand the concepts.

By Dalil A

•

Dec 15, 2020

Very tough course, needed to really dive into books about folium and etc...for the final peer to peer grade exam

but thats fine, sometimes in data science you need to really look and search to find solutions.

By Florent M

•

May 7, 2019

Cours intéressant et évaluation pertinente. Il est cependant plus optimal de s'appuyer sur des ressources externes pour avoir accès à des mémos sur Pandas et Matplotlib (il y a de très bons sites là-dessus).

By Phenil B

•

Apr 17, 2019

Videos were short and could have explained the lab work better. Also, the Data was discussed in every single video which was annoying and I always skipped 30 seconds in every video.

The course itself is nice.

By Joshua M

•

May 31, 2020

Course material did not prepare you well for the final assignment, the final assignment was too difficult and didn't have enough clear instruction. Overall, the course material was very interesting though.

By M.P.Jananee

•

Dec 31, 2019

Course was interesting. Few more sample exercises on the features of map, artist layer could have been useful. Since these are more visualizing concepts which requires more practice and thinking. THANK YOU

By Tiffany W S

•

Sep 24, 2018

This course and the following course "Data Analysis with Python" should be switched. It's mentioned that "Data Analysis with Python" should be completed before this one but they are in the reverse order.

By Darwin M

•

Mar 15, 2020

Good course, some of the lab assignments did not load properly so it was difficult to practice... (week 2 & 3). Assignment was good after using Jupyter Notebooks as the scripting interface. Thank you!

By Alexandre N

•

Dec 21, 2020

This course is asking for more details. It could be extended to one or two more weeks in order to provide broader understand and examples of how to make good use of visualization tools and resources.

By Siwarak L

•

Nov 7, 2019

The final assignment requires self-research (not included in the course material) to fully complete the required items. The course shall cover all that the assignment requires, at least touch a bit.

By Юдин В Д

•

Jan 22, 2020

In each video we transform dataset and it take more 1 minute for each video. Will be good if in video will be some quick quiz as in "Data Analysis with Python" and "Python for Data Science and AI"

By Tirth R

•

Dec 25, 2020

The Course Was Good. It would have been better if some lab sections were covered in labs. As we all know understanding a code then reading might help the students grasp better faster and deeper.

By Mahvash N

•

May 15, 2019

More in class projects similar to final assignment where we can challenge our knowledge as we are all remote and it takes time to communicate through the available coursera forums.

Thank you.

By Manik H

•

Jun 8, 2020

The labs were good but the issue was the extremely rushed up videos. A lot of concepts, especially the artist layer was not covered will in the videos, which made me give this course 4 stars.

By Miguel C V

•

Jul 5, 2020

I learned solid bases on different data visualization tools, it was an overall good course. The one thing I think could be better is to provide more exercises to work with the Artist Layer.

By Carsten K

•

Mar 13, 2020

Good coverage of different plots. Videos are somewhat repetitive regarding the dataset (most of them could be about 20% shorter due to this). Labs (in Jupyter Notebooks) are great practice.

By SAMIR B

•

Mar 6, 2020

The course was beautifully structured. I would like to request to add the conditions on which tiles Mapbox Bright works. At times the tiles dont work and we are not sure of the root cause.

By Shivam S

•

Sep 25, 2019

Kindly update the final assessment of this course work since it is quite difficult to work with it, as the content related to the assessment cannot be found in the course videos. Thanks !

By Christopher I F

•

Apr 30, 2021

I learnt an awful lot so I would give the course at least 4 stars. The opinions I got from the forums and the marking was that a lot of people really struggled and quite a few gave up.

By Henry C Y

•

May 24, 2020

Excellent course. The labs really challenge you because some of the material is not directly taught or the syntax differs slightly from what is taught so you have to hunt for answers.

By William P

•

Oct 27, 2020

Great Course, would have liked to have labs/exercises that coincide with the video as he is presenting. Instead, it is designed to watch the video then go back and complete the labs.

By Abby M

•

Oct 8, 2018

The course had a great examples and samples for common and uncommon visualizations. The course lacked the background to be able to import the geojson properly for the final though.