Chevron Left
Back to Introduction to Data Science in Python

Learner Reviews & Feedback for Introduction to Data Science in Python by University of Michigan

4.5
stars
27,081 ratings

About the Course

This course will introduce the learner to the basics of the python programming environment, including fundamental python programming techniques such as lambdas, reading and manipulating csv files, and the numpy library. The course will introduce data manipulation and cleaning techniques using the popular python pandas data science library and introduce the abstraction of the Series and DataFrame as the central data structures for data analysis, along with tutorials on how to use functions such as groupby, merge, and pivot tables effectively. By the end of this course, students will be able to take tabular data, clean it, manipulate it, and run basic inferential statistical analyses. This course should be taken before any of the other Applied Data Science with Python courses: Applied Plotting, Charting & Data Representation in Python, Applied Machine Learning in Python, Applied Text Mining in Python, Applied Social Network Analysis in Python....

Top reviews

CB

Feb 6, 2023

The assessments, quizzes, and course coverage are quite good. The main points are covered, although it does not cover everything. Additionally, it provides opportunities to learn and conduct research.

PK

May 9, 2020

The course had helped in understanding the concepts of NumPy and pandas. The assignments were so helpful to apply these concepts which provide an in-depth understanding of the Numpy as well as pandans

Filter by:

5351 - 5375 of 5,951 Reviews for Introduction to Data Science in Python

By Hanwen L

•

Aug 15, 2019

Please update the auto-grader such that is it compatible with current version of Jupyter notebook, very frustrating dealing compatibility issues

By Hemanta B

•

Aug 13, 2019

This course is a nicely organized. However assignments are not completely clear. Especially assignment 4 needs more explanation and details.

By Joel B

•

Aug 1, 2019

Subject matter was very good. Some of the assignments were not clear on instruction, and some of the Coursera functions were buggy or broken

By Paul A

•

Nov 5, 2018

Material delivered a bit too rapidly to effectively assimilate. Often, further external research is needed to find solutions to assignments.

By John W

•

Mar 27, 2019

I don't think this is a good enough course to "teach" you "data-science". All this does is give you an overview of things you need to know.

By Ahmad A

•

Jun 24, 2018

The assignment descriptions needs to be precise (with psuedo code).And the statistics part needed a lot visualization to aid understanding.

By Jordan K

•

May 19, 2018

The material is valuable and taught well. The lectures are impossibly fast paced (lots of pausing) and the assignments are often ambiguous.

By Vusisizwe M

•

Dec 5, 2022

The course is great, if ambiguity and vagueness could be removed when asking questions. This would help with finishing the course on time.

By Adam P

•

Mar 13, 2022

Assignments were more difficult than they needed to be because many of the directions were unclear. Otherwise, the class was interesting.

By Vipin G

•

Dec 16, 2017

Great Assignments, Great learning, but requires good "prior" knowledge of Python and Pandas. This is more of a refresher course in Pandas.

By Marat K

•

Nov 11, 2017

Much more time needs to be invested into theory of the data frames. The course is too lightweight for the heavyweight topic it's covering.

By SHUVA M

•

Sep 3, 2020

Course materials should be scrutinized. It's like the mentor is going through a scripted page. I understood very little from this course.

By Tobias T

•

Aug 26, 2020

Good course for the basics, but the assignments are very difficult as lectures do not cover everything which is asked in the assignments.

By Greg S

•

Jan 4, 2018

Great Content. Course Auto-Grader was immensely frustrating. Videos aren't very helpful except to identify where to do your self study.

By Sai S B

•

Jun 19, 2020

The course assignments are at a very good level. But, I feel the course doesn't prepare you for that. Most of the work is self-learning.

By Kelsey S

•

Aug 17, 2018

The examples used are so small it's hard to understand how to use these skills in real-world situations if you aren't as used to Python.

By Michal Z

•

Jan 5, 2018

There should be more Pandas API hints in lectures, it ware really hard to find optimal ways to perform operations on DataFrames I wanted

By Francesco L

•

Mar 5, 2017

The course lessons could have been more specific and provide more explanations on many topics that are later required in the assignments

By Jimi O

•

May 28, 2019

Lectures are interesting but coursework is challenging. It requires significant external reading and understanding to stand a chance.

By Bruno C

•

Jul 6, 2020

The demanded exercises were way harder than the content taught. Also, the main teacher isn't didatic, he speaks in a monotonous way.

By Morales J S

•

Jun 21, 2020

is good to make students to investigate but, in the whole course i was thinking that youtube teached me more than the course itself.

By Sergey S

•

May 9, 2020

It is a bit messy. There are bugs and the sytem of ex submission is not really well done. There is a problem with the certification.

By MS

•

Oct 2, 2020

The instructions are well and clear. I wish we were given more examples and the data files to play with. Overall enjoyed the course

By Cedric R

•

Oct 31, 2019

First Assignment was pretty unclear where to find or what to do. Makes no sense to explain it the week after from my point of view.

By Taylan T

•

Oct 16, 2019

The instructor just reads the notes in front of the camera. The lectures are boring and uninspired. I do not recommend this course