Chevron Left
Back to Data Science Methodology

Learner Reviews & Feedback for Data Science Methodology by IBM

4.6
stars
20,522 ratings

About the Course

If there is a shortcut to becoming a Data Scientist, then learning to think and work like a successful Data Scientist is it. In this course, you will learn and then apply this methodology that you can use to tackle any Data Science scenario. You’ll explore two notable data science methodologies, Foundational Data Science Methodology, and the six-stage CRISP-DM data science methodology, and learn how to apply these data science methodologies. Most established data scientists follow these or similar methodologies for solving data science problems. Begin by learning about forming the business/research problem Learn how data scientists obtain, prepare, and analyze data. Discover how applying data science methodology practices helps ensure that the data used for problem-solving is relevant and properly manipulated to address the question. Next, learn about building the data model, deploying that model, data storytelling, and obtaining feedback You’ll think like a data scientist and develop your data science methodology skills using a real-world inspired scenario through progressive labs hosted within Jupyter Notebooks and using Python....

Top reviews

AG

May 13, 2019

This is a proper course which will make you to understand each and every stage of Data science methodology. Lectures are well enough to make you think as a data scientist. Thank you fr this course :)

JM

Feb 26, 2020

Very informative step-by-step guide of how to create a data science project. Course presents concepts in an engaging way and the quizzes and assignments helped in understanding the overall material.

Filter by:

2251 - 2275 of 2,588 Reviews for Data Science Methodology

By Morgane B

•

Aug 23, 2020

Ce cours présente quelques méthodes d'analyse, mais elles ne sont pas assez structurées. Une présentation plus exhaustive des méthodes avec des exemples, voire une nomenclature pourraient être plus utiles. Le cours gagnerait en qualité s'il donnait un schéma par type de données et méthodologie de traitement conseillée avec ensuite les outils techniques recommandés.

By Evgeniy A

•

May 22, 2022

This course need to be more informative and give more details about each step of the DS Methodology. Maybe more info on models - what models are there, how they can be classified. More info about types of the analysis. The corresponding literature recommendation would also be awesome. Overall - good course to give you an overiew on Data Science Methodology.

By Hadi A

•

Jun 26, 2019

Its an amazing course to give you an introduction to Data Science Methodology. But the case chosen was a hard case to understand specially if someone is a beginner in statistics and not into the medical field. I wasn't the only one who got confused while using the methodology on the case shown. Hopefully, a simpler case gets introduced in future.

By Dita A

•

Mar 4, 2019

The course is good but the way the example is explained is a bit confusing, especially the when jumping from study content/material to the example.

The peer to peer review for the final assignment is veeeerrryyy subjective. I had to submit 3 times (with little to no change on my answer) in order to pass. Good luck on getting a nice reviewer! :)

By Rahul G

•

Jun 11, 2024

The example in this course should not be a difficult one. Taking the example of the hospital was in my opinion a wrong choice as it distracts the student from learning the main objective of the course, Data Science. The second example used (of the cooking recipe) was a better choice and should've been used throughout this course.

By Brandon B

•

Apr 29, 2020

CONS: I would really prefer more interactive lectures. The lectures tended to be boring and monotone. Also the case study content many times was difficult to grasp because it is very specific to hospital field.

PROS: The material covered is quite beneficial in understanding the overall data science process. It is a nice summary.

By Tim P

•

Apr 23, 2020

I thought the course was pretty thorough. Differences between AI automation and data science problem solving is not really explored. Also the main case study was a little out of date and not very well explained. I thought it was a course worth taking as the material around the earlier parts of the methodology were really good.

By Abraham Z

•

Jan 3, 2020

IBM Developer Skills Network was have connection issues during the lessons. I worked on this course at several different locations on two different PC environments. One PC was a corporate controlled windows system, and the other was personal windows system. These connection issues distracted from the course content.

By Rakshit K

•

Sep 10, 2018

If you could have explained the terms related to machine learning more and if you could have spend more time on understanding the Actual problem of the case study and then slowly built up the solution it would have been great course. I loved the organization of course but not the flow of the course. Thank You.

By Muhammad U T

•

May 30, 2019

It provides a satisfactory overview of the data Science methodology, but the slides and the videos does not suffice the needs to fully understand the concepts and the Labs. Supplementary readings for this course are MANDATORY to understand and fill the knowledge gaps for several topics named in the videos.

By Tom L

•

Jan 30, 2020

This course would benefit from more real life examples, and more time spent on an overview of the methodology prior to looking in depth. How the stages would be applied is not explained very clearly. Having completed this course, I am not completely confident in my knowledge of the contents.

By Marcio A

•

Sep 29, 2020

The course is very good. Using a 'case' is helpful to the process. The material presented is also very good, however, would be goog if it was avaliable for the students, even in PDF format. The transcriptions itself are not enough and I was expecting more from Coursera and IBM .

By Rafael P

•

Jul 19, 2019

I think that they should define more the specific concepts of all the states of the methodology, and then make references to "hypothetical" cases. Personally, I lost more trying to understand the examples and I had to go to find more specific information in other sources.

By Nigel D

•

Jan 26, 2020

I really enjoyed the information in the course. Despite having all the information necessary to pass, I do not feel like the course went into enough detail on some of the topics in order to make them understandable. I think this course should be more in-depth than it is.

By Nick L

•

Sep 9, 2020

Although the course does provide a high-level overview of the IBM Data Science Methodology, I would say it does so at a very basic level that does not really help you prepare for any real-world on-the-job application. I can only hope the coming modules go in more depth.

By Ogbonna O

•

May 17, 2020

The course was good but I feel the materials need to be updated. I do not think the videos get down to the nitty-gritty of the concepts. To complete this course, I still had to use external content a lot more than I did in previous courses to get proper understanding.

By Kazi M R

•

Apr 26, 2020

The concepts discussed in the video lectures are not clear enough. Also the case/example used in the video lectures have complicated terms and requires some subject matter knowledge. However, the labs are very well designed which helped in the understanding process.

By Patrice J E

•

Apr 5, 2020

There were issues with Jypter notebook not working. I also felt for some of the steps such as Data Understanding, Data Preparation etc the descriptions of the stages were too similar which let to confusion. See Week 2 Forum messages. Overall i enjoyed it nonetheless

By Cheuk Y M

•

Apr 26, 2019

Grateful if more explanation or more cases can be given. Also, I found that the final assignment has a mistake, making the total available scores changed from 10 to 9, which force us to make a "perfect answer" to get almost a full mark (the passing mark is 8 marks).

By Firda S

•

Jan 26, 2020

I think the case study is too hard to understand. The analogy using cooking it's good, however, the case study using hospital problem it's really hard for me to understand. Maybe it could improve if it's using like general case study that everyone would understand.

By Marvin R

•

May 19, 2020

The examples were confusing at some point. The videos could've expanded the concepts more so that the differences between each stage of the Data Science Methodology becomes clearer. The case study in the video is also confusing for someone in a non-medical field.

By Ellen H

•

Feb 17, 2020

Pretty good course, but could have been a little more challenging. I'm glad I learned the process, but I'm ready for some more hands-on work. This was getting close- I think the final projects, especially for week 3, were good practice to apply what I learned.

By Suyog J

•

Oct 9, 2019

Appreciate the content so far. This can be though made more in-depth when it comes to hands on. Including graded level hands on practice can enhance the learning experience the students get from this course.

Thanks for enabling us with all through the course.

By Supral R J

•

May 10, 2024

Additional readings needed! Although, I was able to gain a superficial understanding of all stages of the Data Science Methodology, additional readings, particularly on Analytic Approach, Modeling and Evaluation, would have been greatly helpful.

By Chaojie W

•

Oct 26, 2019

I understand that this video want to give a full image of Data Science. But its case study including too much low-frequency vocabulary / terminology, which is an obstacle to beginner. And some reading material 's exercise is not very necessary...