In this course, we’ll learn about more advanced machine learning methods that are used to tackle problems in the supply chain. We’ll start with an overview of the different ML paradigms (regression/classification) and where the latest models fit into these breakdowns. Then, we’ll dive deeper into some of the specific techniques and use cases such as using neural networks to predict product demand and random forests to classify products. An important part to using these models is understanding their assumptions and required preprocessing steps. We’ll end with a project incorporating advanced techniques with an image classification problem to find faulty products coming out of a machine.
Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.
Advanced AI Techniques for the Supply Chain
Dieser Kurs ist Teil von Spezialisierung Machine Learning for Supply Chains
Dozenten: Rajvir Dua
1.754 bereits angemeldet
Bei enthalten
(12 Bewertungen)
Empfohlene Erfahrung
Kompetenzen, die Sie erwerben
- Kategorie: Bias–Variance Tradeoff
- Kategorie: Machine Learning
- Kategorie: Supply Chain
- Kategorie: Natural Language Processing
- Kategorie: Image Analysis
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
4 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 4 Module
In this module, we'll learn about the use cases of machine learning in the supply chain. We'll start with the big picture applications before diving deeper into specific algorithms, including neural networks. Throughout the module, we'll explain not only the general artificial intelligence concepts and mathematics, but also how these algorithms can specifically be used for the supply chain.
Das ist alles enthalten
4 Videos4 Lektüren2 Aufgaben1 Diskussionsthema1 Unbewertetes Labor
In this module, we'll cover the concepts relating to the ML paradigm. We'll start by learning how to pick a model, relying on considerations such as managing the bias-variance tradeoff. Next, we'll explore how machine learning models converge, including the use of stochastic gradient descent to minimize loss functions. Finally, we'll end with some practical considerations on coding advanced AI models with libraries for hyperparamter tuning.
Das ist alles enthalten
3 Videos4 Lektüren1 Aufgabe1 Programmieraufgabe3 Unbewertete Labore
In this module, we'll expand beyond numbers and learn how to use machine learning on images and text. We'll start by talking about how to analyze text data and cover the primary methods behind natural language processing. Then, we'll learn how to analyze images by constructing convolutional neural networks complete with convolutions and pooling layers.
Das ist alles enthalten
5 Videos5 Lektüren1 Aufgabe1 Diskussionsthema2 Unbewertete Labore
In this final project, we’ll apply what we learned in the last module to classify images of products based on whether there is a defect or not.
Das ist alles enthalten
1 Programmieraufgabe1 Unbewertetes Labor
von
Empfohlen, wenn Sie sich für Machine Learning interessieren
DeepLearning.AI
Alberta Machine Intelligence Institute
Amazon Web Services
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.