The course "Advanced Methods in Machine Learning Applications" delves into sophisticated machine learning techniques, offering learners an in-depth understanding of ensemble learning, regression analysis, unsupervised learning, and reinforcement learning. The course emphasizes practical application, teaching students how to apply advanced techniques to solve complex problems and optimize model performance. Learners will explore methods like bagging, boosting, and stacking, as well as advanced regression approaches and clustering algorithms.
Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.
Advanced Methods in Machine Learning Applications
Dieser Kurs ist Teil von Spezialisierung Applied Machine Learning
Dozent: Erhan Guven
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Understand and apply ensemble methods to improve model accuracy and robustness by combining multiple learning algorithms.
Explore advanced regression techniques for predicting continuous outcomes and modeling complex relationships in data.
Apply unsupervised learning algorithms for clustering, dimensionality reduction, and pattern recognition in unlabeled data.
Understand and implement reinforcement learning techniques and apriori analysis for decision-making and association rule mining.
Kompetenzen, die Sie erwerben
- Kategorie: Ensemble Learning
- Kategorie: Unsupervised Learning
- Kategorie: Reinforcement Learning
- Kategorie: Apriori Analysis
- Kategorie: Advanced Regression Techniques
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
September 2024
12 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 5 Module
This course provides a comprehensive exploration of advanced machine-learning techniques, including ensemble methods, regression analysis, and unsupervised learning algorithms. Students will gain hands-on experience with reinforcement learning and decision tree models while applying association rule mining on real datasets. Emphasis is placed on evaluating model performance and comparing various learning approaches. By the end, participants will be equipped with practical skills to tackle complex data-driven challenges.
Das ist alles enthalten
2 Lektüren
You can enhance supervised learning by using multiple weak classifiers that work on subsets of features with limited learning capability. By leveraging their sheer numbers and majority voting, ensemble classifiers consistently outperform and offer greater robustness than complex individual classifiers. Random Forest, considered one of the premier ensemble classifiers, relies on weak decision tree classifiers. Therefore, decision tree classifiers and their visualizations will be introduced in this module. Furthermore, you will see how employing numerous weak classifiers with reduced feature sets from the dataset can achieve combined voting performance that surpasses that of individual classifiers.
Das ist alles enthalten
4 Videos2 Lektüren3 Aufgaben1 Unbewertetes Labor
Certain problems you encounter will demand precise numerical predictions, such as forecasting the seasonal flu arrival rate or predicting next week's stock market index. For such scenarios, regression techniques prove invaluable. Throughout this module, you'll explore various types of regression, solve linear regression equations analytically, define cost functions, and understand situations where linear regression may falter. Additionally, you'll delve into coding quadratic and logistic regressions from scratch, utilizing polynomial features and sci-fi optimizers. Logistic regression, a widely used classification method, fits data to a logistic curve based on dataset features. You'll apply logistic regression to develop a predictive model for cancer recurrence using patient diagnostic data.
Das ist alles enthalten
4 Videos3 Lektüren3 Aufgaben1 Unbewertetes Labor
In this module, you will explore unsupervised learning, which serves as the counterpart to supervised learning. Unsupervised learning aims to construct the underlying probability distribution of a dataset based on its features as random variables, enabling it to identify outliers and centroids of densities. You'll begin by understanding distance and similarity metrics crucial for clustering algorithms. Popular algorithms like k-means, DBSCAN, hierarchical clustering, and EM will be introduced briefly. You'll also learn about metrics that evaluate cluster quality, alongside 3D visualizations and dendrograms. Using an artificial dataset similar to the one used in supervised learning, you will apply clustering techniques. Additionally, you'll witness clustering in action on the famous iris dataset, employing various algorithms. Throughout, you'll discover how the Elbow method aids in determining the optimal number of clusters.
Das ist alles enthalten
4 Videos2 Lektüren3 Aufgaben1 Unbewertetes Labor
In this module, you will explore reinforcement learning, completing the trio of major learning strategies alongside supervised and unsupervised methods. Similar to how humans learn to navigate their environments, reinforcement learning operates in scenarios where ground truth is absent or impractical, relying instead on interactions with the environment. You'll discover how guidelines are learned through rewards and penalties to maximize benefits or minimize costs. Reinforcement learning is widely applied in teaching computers to play complex board games like Backgammon or chess—AlphaGo's triumph over the Go world champion exemplifies its capabilities in AI advancement. You'll delve into the reinforcement model, terminology, and typical problems such as tic-tac-toe and elevator control. Techniques for developing a mathematical model like Q-learning, based on states and actions, will be explored, culminating in hands-on implementation to master a chosen game.
Das ist alles enthalten
6 Videos3 Lektüren3 Aufgaben1 Programmieraufgabe
Dozent
Empfohlen, wenn Sie sich für Machine Learning interessieren
University of London
Alberta Machine Intelligence Institute
DeepLearning.AI
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.