The course "Applied Machine Learning: Techniques and Applications" focuses on the practical use of machine learning across various domains, particularly in computer vision, data feature analysis, and model evaluation. Learners will gain hands-on experience with key techniques, such as image processing and supervised learning methods while mastering essential skills in data pre-processing and model evaluation.
Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.
Applied Machine Learning: Techniques and Applications
Dieser Kurs ist Teil von Spezialisierung Applied Machine Learning
Dozent: Erhan Guven
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Understand and implement machine learning techniques for computer vision tasks, including image recognition and object detection.
Analyze data features and evaluate machine learning model performance using appropriate metrics and evaluation techniques.
Apply data pre-processing methods to clean, transform, and prepare data for effective machine learning model training.
Implement and optimize supervised learning algorithms for classification and regression tasks.
Kompetenzen, die Sie erwerben
- Kategorie: Data Pre-Processing
- Kategorie: Feature Engineering
- Kategorie: Supervised Learning
- Kategorie: Practical Application
- Kategorie: Model Evaluation
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
September 2024
12 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 5 Module
Explore the practical applications of machine learning through hands-on modules covering data pre-processing, feature extraction, model evaluation, and supervised learning techniques. Delve into specialized topics such as computer vision and learn to implement and assess various machine learning models. This course combines theoretical insights with practical lab activities to equip you with essential skills in applied machine learning.
Das ist alles enthalten
2 Lektüren
Discover the foundational principles and practical applications of machine learning in the field of computer vision. This module covers essential concepts, including data preprocessing, dataset management, classification techniques, and model evaluation, providing a comprehensive introduction to applying machine learning to visual data.
Das ist alles enthalten
5 Videos2 Lektüren3 Aufgaben1 Unbewertetes Labor
Explore essential techniques in data feature analysis and model evaluation critical to effective machine learning applications. Learn to identify, preprocess, and integrate datasets from diverse sources like UCI KDD and Kaggle. Gain hands-on experience with the Weka framework for data preprocessing and classification, and understand evaluation metrics including Receiver Operating Characteristic curves. By the end of this module, you'll grasp the nuances of model overfitting and strategies to optimize model performance.
Das ist alles enthalten
7 Videos2 Lektüren3 Aufgaben1 Unbewertetes Labor
Master the essential techniques of data pre-processing to enhance machine learning model performance. This module covers the foundational aspects of data cleaning, various data formats, and processing methods. You'll delve into advanced topics like discretization, data transformation, and reduction techniques. By the end of this module, you'll be adept at engineering data features, applying feature selection, and refining datasets for optimal machine learning outcomes.
Das ist alles enthalten
5 Videos1 Lektüre3 Aufgaben1 Unbewertetes Labor
Delve into the core principles and mathematical foundations of supervised learning algorithms. This module covers essential techniques, including the Perceptron algorithm, Naive Bayes classifier, and Linear Regression methods. You'll gain practical experience implementing and visualizing these algorithms, and explore how classifier decision boundaries shift with parameter changes. Additionally, learn to apply text classification using real-world datasets for hands-on understanding of supervised learning applications.
Das ist alles enthalten
6 Videos2 Lektüren3 Aufgaben1 Programmieraufgabe
Dozent
Empfohlen, wenn Sie sich für Machine Learning interessieren
University of Colorado Boulder
MathWorks
Alberta Machine Intelligence Institute
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.