Computing applications involving large amounts of data – the domain of data science – impact the lives of most people in the U.S. and the world. These impacts include recommendations made to us by internet-based systems, information that is available about us online, techniques that are used for security and surveillance, data that is used in health care, and many more. In many cases, they are affected by techniques in artificial intelligence and machine learning.
Ethical Issues in Data Science
Dieser Kurs ist Teil von Spezialisierung Vital Skills for Data Science
Dozent: Bobby Schnabel
3.516 bereits angemeldet
Bei enthalten
(37 Bewertungen)
Empfohlene Erfahrung
Was Sie lernen werden
Learners will be able to Identify and manage ethical situations that may arise in their careers.
Learnerrs will be able to apply ethical frameworks to help them analyze ethical challenges.
Learners will be familiar with key applications of data science that are commonly linked to ethical issues.
Kompetenzen, die Sie erwerben
- Kategorie: Philosophy
- Kategorie: Data Science
- Kategorie: Algorithms
- Kategorie: Privacy
- Kategorie: Ethics
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
4 Quizzes
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 5 Module
This module begins with an introduction to the course including motivation for the topic, the course goals, what topics the course will cover, and what is expected of the students. It then reviews the three ethical frameworks that are most commonly applied to ethical discussions in data science and computing: Kantianism/deontology, virtue ethics, and utilitarianism. Case studies are used to illustrate the application and properties of these frameworks.
Das ist alles enthalten
5 Videos6 Lektüren1 Quiz3 Diskussionsthemen
This module begins with some background about the Internet, which is the foundation for most of the topics that we study in this course. It then discusses the two most basic ethical issues in using the internet, privacy and security, in the context of data science. It goes through a number of real case studies and examples for each to illustrate the diversity of issues.
Das ist alles enthalten
5 Videos2 Lektüren1 Quiz1 peer review2 Diskussionsthemen
This module provides insight into the ethical issues in the data science profession and workplace (as opposed to technical topics in data science). It starts with discussion of two highly relevant codes of professional ethics, from professional societies in statistics and in computing. It then looks at a variety of recent workplace ethics issues in tech companies. A key part of this module is interviewing a data science professional about ethical issues they have encountered in their career.
Das ist alles enthalten
4 Videos2 Lektüren1 Quiz1 peer review1 Diskussionsthema
Algorithmic bias may be the topic that people associate most with ethical issues in data science. This module begins by providing some general background on algorithmic bias and considering varying views on the pros and cons of algorithmic vs. human decision making. It then reviews an illustrative set of examples of algorithmic bias related to gender and race, which is a particularly important class of instances of algorithmic bias. The final part of the module discusses what is perhaps the single most prominent and discussed instance of algorithmic decision making and bias, facial recognition.
Das ist alles enthalten
6 Videos3 Lektüren1 Quiz1 peer review1 Diskussionsthema
Data science is applied to a wide variety of important application areas, each with their own ethical issues. This module focuses on an application area that is both particularly important and leads to a rich set of ethical issues: medical applications. This includes looking at current issues involved with health databases and the uses of artificial intelligence in healthcare, and more futuristic issues, gene editing and neurological interventions. The module concludes with a crucial topic that every data science profession should consider: the implications of the fields of data science and computing on the future of human work.
Das ist alles enthalten
6 Videos3 Lektüren1 peer review3 Diskussionsthemen
Dozent
Empfohlen, wenn Sie sich für Data Analysis interessieren
University of Colorado Boulder
University of Colorado Boulder
University of Colorado Boulder
Lund University
Auf einen Abschluss hinarbeiten
Dieses Kurs ist Teil des/der folgenden Studiengangs/Studiengänge, die von University of Colorado Boulderangeboten werden. Wenn Sie zugelassen werden und sich immatrikulieren, können Ihre abgeschlossenen Kurse auf Ihren Studienabschluss angerechnet werden und Ihre Fortschritte können mit Ihnen übertragen werden.¹
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Bewertungen von Lernenden
Zeigt 3 von 37
37 Bewertungen
- 5 stars
86,48 %
- 4 stars
5,40 %
- 3 stars
2,70 %
- 2 stars
2,70 %
- 1 star
2,70 %
Geprüft am 17. Sep. 2022
Geprüft am 11. Juli 2022
Geprüft am 12. Juni 2021
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.