This course will cover various topics in Data Engineering in support of decision support systems, data analytics, data mining, machine learning, and artificial intelligence. You will study on-premises data warehouse architecture, and dimensional modeling of data warehouses.
Kompetenzen, die Sie erwerben
- Kategorie: Data Warehousing
- Kategorie: Data Warehouse Architectures
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
Juli 2024
5 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 4 Module
This module introduces data warehousing and business intelligence, emphasizing their role in enhancing organizational decision-making. Data warehouses transform raw data into actionable insights using processes like ETL (Extract, Transform, Load), supported by tools such as OLAP for querying and data mining. While operational databases (OLTP) are suited for daily transactions, OLAP databases are optimized for complex analytics. To effectively implement data warehousing solutions, it is essential to understand the underlying database design principles. Therefore, the module reviews key concepts related to operational databases, focusing on conceptual database design. We examine Entity Relationship Diagrams (ERD) as a vital tool for conceptual representation, identifying crucial aspects of the database design process that convert business requirements into a conceptual model. In the subsequent module, we will build on this foundation by reviewing logical modeling and the implementation of databases, equipping students with a comprehensive understanding of both the database design process and OLAP systems. This knowledge will serve as a stepping stone as we explore the complexities of data warehouses.
Das ist alles enthalten
1 Video6 Lektüren1 Aufgabe2 Diskussionsthemen
This module builds on the foundations of database design from the previous module focussing on relational database modeling, normalization, and SQL. The readings will guide you in translating a conceptual EER diagram into a relational model, ensuring adherence to normalization principles, particularly aiming for the 3rd Normal Form. We’ll also emphasize understanding primary keys and foreign keys for maintaining data integrity and establishing table relationships. Additionally, you will have the opportunity to create and critique relational models. We’ll then explore SQL basics, covering syntax (SELECT, INSERT, UPDATE, DELETE), querying techniques (WHERE, ORDER BY, JOIN), and operations involving functions and aggregates (COUNT, SUM, AVG, MIN, MAX), which are fundamental in database querying and management. By the end of this module, we expect students to be comfortable with database design, which is essential for implementing an OLTP system.
Das ist alles enthalten
2 Lektüren2 Aufgaben1 App-Element1 Diskussionsthema
This module provides an introduction to Data Warehouse Concepts. Data warehouses are based on a multidimensional model. We will look closely into the multidimensional model and its representation as data cubes (also known as hypercubes). We’ll examine how different aspects of data are categorized into facts, measures, and dimensions. Dimensions like Product, Time, and Customer are organized hierarchically within a cube, allowing data to be analyzed at various levels of detail.
Das ist alles enthalten
2 Videos2 Lektüren1 Aufgabe1 App-Element1 Diskussionsthema
This module continues an introduction to Data Warehouse Concepts. We’ll examine how different aspects of data are categorized into facts, measures, and dimensions. Dimensions like Product, Time, and Customer are organized hierarchically within a cube, allowing data to be analyzed at various levels of detail. Measures such as Quantity and Sales Amount are stored within these cubes, and analysts can navigate through different levels of detail using "rolling up" and "drilling down" techniques. Key concepts like granularity, dimension schema, and member hierarchies are essential in understanding how data is structured and analyzed in multidimensional models. Additionally, principles like disjointness, completeness, and correctness ensure data accuracy and integrity when aggregating information in data cubes, collectively known as summarizability.
Das ist alles enthalten
3 Lektüren1 Aufgabe
Dozent
Empfohlen, wenn Sie sich für Machine Learning interessieren
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.