Career prospects are bright for those qualified to work in healthcare data analytics. Perhaps you work in data analytics, but are considering a move into healthcare where your work can improve people’s quality of life. If so, this course gives you a glimpse into why this work matters, what you’d be doing in this role, and what takes place on the Path to Value where data is gathered from patients at the point of care, moves into data warehouses to be prepared for analysis, then moves along the data pipeline to be transformed into valuable insights that can save lives, reduce costs, to improve healthcare and make it more accessible and affordable. Perhaps you work in healthcare but are considering a transition into a new role. If so, this course will help you see if this career path is one you want to pursue. You’ll get an overview of common data models and their uses. You’ll learn how various systems integrate data, how to ensure clear communication, measure and improve data quality. Data analytics in healthcare serves doctors, clinicians, patients, care providers, and those who carry out the business of improving health outcomes. This course of study will give you a clear picture of data analysis in today’s fast-changing healthcare field and the opportunities it holds for you.
Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.
Healthcare Data Models
Dieser Kurs ist Teil von Spezialisierung Health Information Literacy for Data Analytics
Dozent: Doug Berman
8.234 bereits angemeldet
Bei enthalten
(52 Bewertungen)
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
4 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 4 Module
In this module, you will be able to define the foundational terms used in discussing and building healthcare data models. You'll be able to describe the conceptual model showing how data flows from operations to analysis. You will compare and contrast common data models used in healthcare data systems. You will also be able to identify common measures used in healthcare data analysis.
Das ist alles enthalten
10 Videos1 Lektüre1 Aufgabe3 Diskussionsthemen
In this module, you'll be able to describe the Star Schema Data Model, distinguish it from the hierarchical and relational model, list some pros and cons and explain situations in which it could be appropriately used. You should also recognize when another type of data model might be better suited to a particular use case.
Das ist alles enthalten
6 Videos1 Aufgabe2 Diskussionsthemen
In this module, you'll be able to explain how information is stored in data models and how we assemble relevant information to analyze an interesting problem that can improve our healthcare systems. We'll review how we normalize data and how that facilitates analysis. We'll go on to discuss how to bring together information from different sources and across various functional systems. We will also consider how to measure it accurately.
Das ist alles enthalten
5 Videos1 Aufgabe2 Diskussionsthemen
In this module, you will be able to examine the data that goes into these models and explain how we work with the information that comes from the practice and business of medicine. We will transition from raising the data quality to focusing on finding and correcting data errors by validation and verification. You will also be able to describe several ways data is checked to eliminate errors and improve data quality.
Das ist alles enthalten
5 Videos3 Lektüren1 Aufgabe1 peer review2 Diskussionsthemen
Dozent
Empfohlen, wenn Sie sich für Health Informatics interessieren
Northeastern University
Northeastern University
Northeastern University
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Bewertungen von Lernenden
Zeigt 3 von 52
52 Bewertungen
- 5 stars
69,23 %
- 4 stars
21,15 %
- 3 stars
5,76 %
- 2 stars
3,84 %
- 1 star
0 %
Geprüft am 30. Okt. 2020
Geprüft am 4. März 2019
Geprüft am 2. Feb. 2023
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.