IBM
Einführung in die R-Programmierung für Data Science
IBM

Einführung in die R-Programmierung für Data Science

Dieser Kurs ist Teil mehrerer Programme.

Yan Luo

Dozent: Yan Luo

48.322 bereits angemeldet

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
4.5

(524 Bewertungen)

Stufe Anfänger
Keine Vorkenntnisse erforderlich
Flexibler Zeitplan
Ca. 10 Stunden
In Ihrem eigenen Lerntempo lernen
94%
Den meisten Lernenden hat dieser Kurs gefallen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
4.5

(524 Bewertungen)

Stufe Anfänger
Keine Vorkenntnisse erforderlich
Flexibler Zeitplan
Ca. 10 Stunden
In Ihrem eigenen Lerntempo lernen
94%
Den meisten Lernenden hat dieser Kurs gefallen

Was Sie lernen werden

  • Manipulieren Sie primitive Datentypen in der Programmiersprache R mit RStudio oder Jupyter Notebooks.

  • Steuern Sie den Programmablauf mit Bedingungen und Schleifen, schreiben Sie Funktionen, führen Sie Operationen mit Zeichenketten durch, schreiben Sie reguläre Ausdrücke, behandeln Sie Fehler.

  • Konstruieren und manipulieren Sie R-Datenstrukturen, einschließlich Vektoren, Faktoren, Listen und Datenrahmen.

  • Lesen, schreiben und speichern Sie Datendateien und scrapen Sie Webseiten mit R.

Kompetenzen, die Sie erwerben

  • Kategorie: Datenverarbeitung
  • Kategorie: R-Programmierung

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Bewertungen

1 Quiz, 8 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Platzhalter

Erweitern Sie Ihre Fachkenntnisse

Dieser Kurs ist als Teil verfügbar
Wenn Sie sich für diesen Kurs anmelden, müssen Sie auch ein bestimmtes Programm auswählen.
  • Lernen Sie neue Konzepte von Branchenexperten
  • Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
  • Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
  • Erwerben Sie ein Berufszertifikat zur Vorlage
Platzhalter
Platzhalter

Erwerben Sie ein Karrierezertifikat.

Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.

Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

Platzhalter

In diesem Kurs gibt es 5 Module

Unabhängig davon, welche Programmiersprache Sie verwenden, haben alle einige Gemeinsamkeiten. Zum Beispiel müssen Sie wahrscheinlich grundlegende Operationen mit verschiedenen Datentypen durchführen, wie die Anwendung mathematischer Gleichungen auf numerische Daten. Außerdem benötigen Sie eine Umgebung, in der Sie Ihren Code schreiben können. Die meisten modernen integrierten Entwicklungsumgebungen (IDEs) bieten Funktionen, die das Schreiben von Code erleichtern, wie z.B. Syntaxprüfung, Farbkodierung und integrierte Hilfe. In diesem Modul lernen Sie die Sprache R, ihre gebräuchlichen Datentypen und Techniken zu deren Bearbeitung kennen. Sie lernen auch die Rolle des R-Interpreters kennen und erfahren, wie er Code in ausführbare Objekte umwandelt. Schließlich werden Sie mit zwei der gängigsten IDEs für die R-Entwicklung vertraut gemacht: RStudio und Jupyter Notebook.

Das ist alles enthalten

7 Videos1 Lektüre1 Quiz1 Aufgabe2 App-Elemente

Die Sprache R unterstützt viele Arten von Datenstrukturen, die Sie zur Organisation und Speicherung von Werten in Ihrem Code verwenden können, darunter Vektoren, Faktoren, Listen, Arrays, Matrizen und Datenrahmen. Jeder Datenstrukturtyp dient einem bestimmten Zweck und kann bestimmte Arten von Daten enthalten. Daher ist es wichtig, die Unterschiede zwischen ihnen zu kennen, damit Sie je nach Ihrem Szenario die richtige Wahl treffen können. In diesem Modul erfahren Sie, welche Arten von Daten Sie in jeder Datenstruktur speichern können und wie Sie deren Inhalt hinzufügen, entfernen oder manipulieren können.

Das ist alles enthalten

5 Videos1 Lektüre2 Aufgaben3 App-Elemente

Wie die meisten Programmiersprachen unterstützt auch R Programmierfunktionen, mit denen Sie den Ablauf der Programmausführung steuern, Funktionen definieren können, die bestimmte Aufgaben ausführen, mit gängigen Datentypen wie Strings und Datumsangaben arbeiten und Ihren Code robuster machen, indem Sie wahrscheinliche Fehler abfangen und behandeln, bevor sie die Ausführung Ihres Codes unterbrechen. In diesem Modul lernen Sie, wie Sie diese grundlegenden Programmieraufgaben in R implementieren.

Das ist alles enthalten

6 Videos1 Lektüre2 Aufgaben3 App-Elemente

Daten sind überall! Die Daten, die Sie analysieren müssen, können aus einer herkömmlichen Datenbank stammen, aber auch aus einer Vielzahl unterschiedlicher Quellen und Systeme, und sie können in einem oder mehreren Formaten zu Ihnen kommen. Zum Beispiel können Ihre Daten in Text-, Excel-, JSON- oder XML-Dateien vorliegen. Oder sie sind gar nicht in einer Datei gespeichert, sondern befinden sich auf den Seiten einer Website. Wie werden Sie all diese verschiedenen Dateiformate in Ihre R-Arbeitsumgebung laden? Dieses Modul stellt Ihnen die Werkzeuge zur Verfügung, die Sie benötigen, um Daten aus einigen gängigen Dateiformaten und Quellen in Datenobjekte zu lesen, die Sie dann in Ihrer Datenanalyse verwenden und mit anderen Datenobjekten kombinieren können.

Das ist alles enthalten

5 Videos1 Lektüre2 Aufgaben3 App-Elemente

Das ist alles enthalten

2 Lektüren1 Aufgabe1 peer review1 App-Element1 Plug-in

Dozent

Lehrkraftbewertungen
4.4 (151 Bewertungen)
Yan Luo
IBM
7 Kurse321.480 Lernende

von

IBM

Empfohlen, wenn Sie sich für Datenanalyse interessieren

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“

Bewertungen von Lernenden

4.5

524 Bewertungen

  • 5 stars

    70,58 %

  • 4 stars

    19,73 %

  • 3 stars

    3,98 %

  • 2 stars

    1,70 %

  • 1 star

    3,98 %

Zeigt 3 von 524 an

LR
4

Geprüft am 5. Okt. 2023

EE
5

Geprüft am 7. März 2022

KB
4

Geprüft am 24. März 2023

Platzhalter

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen