Use statistical learning techniques like linear regression and classification to solve common machine learning problems. Complete short coding assignments in Python.
Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.
Machine Learning Essentials
Dieser Kurs ist Teil von Spezialisierung AI and Machine Learning Essentials with Python
Dozenten: Chris Callison-Burch
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Review probability basics and understand essential theoretical framework to analyze statistical learning problems.
Use linear regression and Python programming to solve machine learning problems.
Kompetenzen, die Sie erwerben
- Kategorie: Logistic Regression
- Kategorie: Linear Regression
- Kategorie: Machine Learning Methods
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
12 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 4 Module
This module introduces the standard theoretical framework used to analyze statistical learning problems. We start by covering the concept of regression function and the need for parametric models to estimate it due to the curse of dimensionality. We continue by presenting tools to assess the quality of a parametric model and discuss the bias-variance tradeoff as a theoretical framework to understand overfitting and optimal model flexibility.
Das ist alles enthalten
8 Videos1 Lektüre3 Aufgaben1 Programmieraufgabe
In this module, we cover the problem of linear regression. We start with a formal statement of the problem, we derive a solution as an optimization problem, and provide a closed-form expression using the matrix pseudoinverse. We then move on to analyze the statistical properties of the linear regression coefficients, such as their covariance and variances. We use this statistical analysis to determine coefficient accuracy and analyze confidence intervals. We then move on to the topic of hypothesis testing, which we use to determine dependencies between input variables and outputs. We finalize with a collection of metrics to measure model accuracy, and continue with the introduction to the Python programming language. Please note, there is no formal assignment this week, and we hope that everyone participates in the discussion instead.
Das ist alles enthalten
7 Videos3 Aufgaben1 Diskussionsthema
In this module, you will learn how to include categorical (discrete) inputs in your linear regression problem, as well as nonlinear effects, such as polynomial and interaction terms. As a companion to this theoretical content, there are two recitation videos that demonstrate how to solve linear regression problems in Python. You will need to use this knowledge to complete a programming project.
Das ist alles enthalten
7 Videos3 Aufgaben1 Programmieraufgabe
In this module, we introduce classification problems from the lens of statistical learning. We start by introducing a generative model based on the concept of conditional class probability. Using these probabilities, we show how to build the Bayes optimal classifier which minimizes the expected misclassification error. We then move on to present logistic regression, in conjunction with maximum likelihood estimation, for parametric estimation of the conditional class probabilities from data. We also extend the idea of hypothesis testing to the context of logistic regression.
Das ist alles enthalten
7 Videos1 Lektüre3 Aufgaben1 Programmieraufgabe
Empfohlen, wenn Sie sich für Machine Learning interessieren
Google Cloud
Edureka
Coursera Project Network
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.