Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.

Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
Johns Hopkins University

Social Network Analysis

Dieser Kurs ist Teil mehrerer Programme.

Ian McCulloh

Dozent: Ian McCulloh

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 13 Stunden
3 Wochen bei 4 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 13 Stunden
3 Wochen bei 4 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Learn to calculate and interpret key centrality measures to identify influential nodes in social networks.

  • Gain skills in applying statistical models to analyze relationships and dynamics within social networks.

  • Understand how foundational social theories inform network analysis and shape interpretations of social interactions.

Kompetenzen, die Sie erwerben

  • Kategorie: Social Theory Application
  • Kategorie: Network Construction
  • Kategorie: Data Analysis in R
  • Kategorie: Statistical Modeling
  • Kategorie: Centrality Analysis

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

September 2024

Bewertungen

9 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Platzhalter

Erweitern Sie Ihre Fachkenntnisse

Dieser Kurs ist als Teil verfügbar
Wenn Sie sich für diesen Kurs anmelden, müssen Sie auch ein bestimmtes Programm auswählen.
  • Lernen Sie neue Konzepte von Branchenexperten
  • Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
  • Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
  • Erwerben Sie ein Berufszertifikat zur Vorlage
Platzhalter
Platzhalter

Erwerben Sie ein Karrierezertifikat.

Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.

Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

Platzhalter

In diesem Kurs gibt es 4 Module

This course explores the intersection of social theories and statistical analysis within social networks, focusing on structural dependence and its implications. Students will engage in hypothesis testing of social forces using empirical data, and will learn to construct networks and model longitudinal behavior with tools such as 'statnet' and 'RSiena.' Key terminology and the hierarchy of social link formation will be emphasized, alongside practical calculations of fundamental graph and network measures like Density and Degree. Additionally, students will differentiate between various network types and centrality measures, equipping them with a comprehensive understanding of social network analysis.

Das ist alles enthalten

1 Lektüre1 Plug-in

In this module, you will explore advanced topics in graph theory and centrality measures as applied to social networks. You will learn to identify key influencers, measure network cohesion, and strategize interventions based on network structure and dynamics.

Das ist alles enthalten

6 Videos2 Lektüren3 Aufgaben1 Unbewertetes Labor

In this module, you will explore Graph Theory and Centrality Measures, delving into the dynamics of social networks. You will also learn to distinguish between the six social forces and understand the hierarchical formation of social links. Discuss foundational social theories that underpin social network analysis, providing insights into how these theories shape organizational networks and societal interactions. This module equips you with essential knowledge to analyze and interpret the intricate relationships within social structures.

Das ist alles enthalten

4 Videos3 Lektüren3 Aufgaben1 Unbewertetes Labor

In this module, you will explore Network Statistical Methods through a comprehensive study of structural dependence and its impact on statistical analysis. You will also learn to calculate link likelihoods manually and conduct hypothesis testing on social forces using empirical data. You will also gain practical skills in constructing Exponential Random Graph Models (ERGM) using ‘statnet’ in R and modeling longitudinal network behavior with Stochastic Actor Oriented Models (SAOM) using ‘RSiena’.

Das ist alles enthalten

3 Videos2 Lektüren3 Aufgaben1 Unbewertetes Labor

Dozent

Ian McCulloh
Johns Hopkins University
10 Kurse429 Lernende

von

Empfohlen, wenn Sie sich für Algorithms interessieren

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Platzhalter

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen