Review the basics of discrete math and probability before enhancing your probability skills and learning how to interpret data with tools such as the central limit theorem, confidence intervals and more. Complete short weekly mathematical assignments.
Statistics for Data Science Essentials
Dieser Kurs ist Teil von Spezialisierung AI and Machine Learning Essentials with Python
Dozenten: Chris Callison-Burch
Bei enthalten
Was Sie lernen werden
Comprehensively review probability and understand its role as a building block of data science.
Apply the central limit theorem, confidence intervals and the method of maximum likelihood to solving data science problems.
Kompetenzen, die Sie erwerben
- Kategorie: Probability And Statistics
- Kategorie: Mathematics
- Kategorie: Confidence Intervals
- Kategorie: Simple Random Sample
- Kategorie: Point Estimation
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
16 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 4 Module
In the first week of the course, we’ll introduce you to a broad definition of data science and go over some of its main building blocks. To prepare, we'll spend some time reviewing discrete math fundamentals. By the end of the week, we will solve our first data science task using random sampling.
Das ist alles enthalten
8 Videos1 Lektüre4 Aufgaben
The second week of our course is devoted to probability: since probability is the main language used by almost every data science concept, we will commit some time to deepening our understanding of it. By the end of the week, you will have far more tools in your probability toolkit, which will serve you throughout your AI and machine learning journey.
Das ist alles enthalten
6 Videos4 Aufgaben
In this week, we will build up our general framework of statistical estimation, taking from several of the concepts we have discussed and more that we will continue to add this week. We will start by going over the sample mean, and we will analyze how good this is as an estimator. We will then explore the Central Limit Theorem, one of the most effective and widely-used tools in statistics and data science. We will also continue some probability review.
Das ist alles enthalten
8 Videos4 Aufgaben
Now that we have learned the important machinery of the Central Limit Theorem, we are ready to learn about confidence intervals this week. Confidence intervals are the main quantities to characterize error bars in almost any area of data science and machine learning. After going through confidence intervals and some examples, we will also explore a more general perspective on estimation: point estimation.
Das ist alles enthalten
7 Videos1 Lektüre4 Aufgaben
Empfohlen, wenn Sie sich für Probability and Statistics interessieren
University of Pennsylvania
University of Pennsylvania
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.