Coursera Project Network
Fine Tune BERT for Text Classification with TensorFlow

Diese geführtes projekt ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
Coursera Project Network

Fine Tune BERT for Text Classification with TensorFlow

Snehan Kekre

Dozent: Snehan Kekre

17.116 bereits angemeldet

Bei Coursera Plus enthalten

Erwerben Sie praxisrelevante Kompetenzen unter Anleitung von Experten, üben Sie sich in ihrer Anwendung und wenden Sie sie schließlich an.
4.6

(200 Bewertungen)

Stufe Mittel

Empfohlene Erfahrung

2.5 hours
In Ihrem eigenen Lerntempo lernen
Praktisches Lernen
Erwerben Sie praxisrelevante Kompetenzen unter Anleitung von Experten, üben Sie sich in ihrer Anwendung und wenden Sie sie schließlich an.
4.6

(200 Bewertungen)

Stufe Mittel

Empfohlene Erfahrung

2.5 hours
In Ihrem eigenen Lerntempo lernen
Praktisches Lernen

Was Sie lernen werden

Kompetenzen, die Sie festigen

  • Kategorie: Tensorflow
  • Kategorie: deep-learning
  • Kategorie: BERT
  • Kategorie: machine-learning
  • Kategorie: natural-language-processing

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Unterrichtet in Englisch
Keine Downloads oder Installation erforderlich

Nur als Desktop-Version verfügbar

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Platzhalter

Lernen, üben und anwenden von berufsrelevanten Fähigkeiten in weniger als 2 Stunden

  • Nehmen Sie an Schulungen von Branchenexperten teil
  • Sammeln Sie mit Aufgaben aus der realen Welt praktische Erfahrung
  • Schaffen Sie Vertrauen durch neueste Tools und Technologien
Platzhalter

Über dieses begleitete Projekt

Schritt für Schritt lernen

In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:

  1. Introduction to the Project

  2. Setup your TensorFlow and Colab Runtime

  3. Download and Import the Quora Insincere Questions Dataset

  4. Create tf.data.Datasets for Training and Evaluation

  5. Download a Pre-trained BERT Model from TensorFlow Hub

  6. Tokenize and Preprocess Text for BERT

  7. Wrap a Python Function into a TensorFlow op for Eager Execution

  8. Create a TensorFlow Input Pipeline with tf.data

  9. Add a Classification Head to the BERT hub.KerasLayer

  10. Fine-Tune and Evaluate BERT for Text Classification

Empfohlene Erfahrung

It is assumed that are competent in Python programming and have prior experience with building deep learning NLP models with TensorFlow or Keras

8 Projektbilder

Dozent

Lehrkraftbewertungen
4.7 (18 Bewertungen)
Snehan Kekre
Coursera Project Network
11 Kurse108.420 Lernende

von

Was Sie beim Lernen erwartet

  • Auf Kompetenzen basierendes, praktisches Lernen

    Üben Sie die Anwendung neuer Kompetenzen anhand von berufsbezogenen Aufgabenstellungen.

  • Anleitung durch Experten

    Lernen Sie mit vorab von Experten aufgezeichneten Videos in einer einzigartigen aufgeteilten Oberfläche.

  • Keine Downloads oder Installation erforderlich

    Greifen Sie in einem vordefinierten Cloud-Arbeitsbereich auf die Tools und Ressourcen zu.

  • Nur für Desktop verfügbar

    Dieses begleitete Projekt ist für die Bearbeitung an einem Laptop oder Desktop-Computer mit stabiler Internetverbindung konzipiert und nicht für Mobilgeräte.

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“

Bewertungen von Lernenden

Zeigt 3 von 200

4.6

200 Bewertungen

  • 5 stars

    71,28 %

  • 4 stars

    20,29 %

  • 3 stars

    4,45 %

  • 2 stars

    1,48 %

  • 1 star

    2,47 %

JH
5

Geprüft am 24. Dez. 2021

JB
5

Geprüft am 6. Okt. 2020

FY
5

Geprüft am 13. Mai 2021

Platzhalter

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen