Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
Ball State University

Introduction to Data Science

Dr. Aihua Li

Instructeur : Dr. Aihua Li

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Débutant
Aucune connaissance prérequise
11 heures pour terminer
3 semaines à 3 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Préparer un diplôme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Débutant
Aucune connaissance prérequise
11 heures pour terminer
3 semaines à 3 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Préparer un diplôme

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Évaluations

9 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Emplacement réservé
Emplacement réservé

Obtenez un certificat professionnel

Ajoutez cette qualification à votre profil LinkedIn ou à votre CV

Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Emplacement réservé

Il y a 6 modules dans ce cours

What is data science and what activities and topics will have in data science? This module will answer the questions first, and then come to one of topics-data ethics. This module will provide a big picture about the data ethic issues within data science and focus on two critical data ethics topics, Informed Consent and Data Ownership. In this module, you will learn to define, explain, and discuss those two specific topics and identify ethical and unethical activities related to them.

Inclus

12 vidéos8 lectures2 devoirs1 sujet de discussion

In this module, we will focus on three important concepts in data ethics: Privacy, Transaction Transparency, and Anonymity. These concepts often intersect and influence each other. In this module, we will explain and describe each term and provide examples to illustrate how these concepts are applied in the field of data science. Special attention is given to de-identification for privacy protection in the module.

Inclus

10 vidéos3 lectures2 devoirs

In this module, we will specifically discuss two important concepts: Data Validity and Algorithmic Fairness. The accuracy and bias of input data is related to data validity, which strongly influences the outcomes and fairness of algorithms. In this module, we will explore how and why inappropriate and unethical data validity can result in unfairness.

Inclus

8 vidéos2 lectures2 devoirs1 évaluation par les pairs

Unethical activities during research design, data collections and data analysis usually lead to societal consequences. However, even if the whole procedure about data is ethical, there may still be unintended consequences due to the development of new technology.In this module, societal consequences in data science are discussed and the code of ethics in research and environmental sciences are outlined to ethically guide potential behavior of data scientists.

Inclus

6 vidéos3 lectures1 devoir1 évaluation par les pairs

This module focuses on the initial phase of a data science project, which involves obtaining data. Specifically, the module covers the following topics of data acquisition: identifying and describing data sources, sampling techniques for data collection, and the impact of sampling bias on research. Through these discussions, the module aims to provide a comprehensive understanding of the initial steps involved in obtaining data for a data science project.

Inclus

7 vidéos2 lectures

This module is dedicated to exploring various concepts about data, such as file formats for delivery and sharing, data types for variables’ basic nature and characteristics, and data structures for data manipulation and data analysis. The concepts of data files, data types and data structures, common data types and structures in programming languages, and specifically data structures in R, are covered.

Inclus

8 vidéos2 lectures2 devoirs

Instructeur

Dr. Aihua Li
Ball State University
5 Cours1 443 apprenants

Offert par

Ball State University

Recommandé si vous êtes intéressé(e) par Data Analysis

Préparer un diplôme

Ce site cours fait partie du (des) programme(s) diplômant(s) suivant(s) proposé(s) par Ball State University. Si vous êtes admis et que vous vous inscrivez, les cours que vous avez suivis peuvent compter pour l'apprentissage de votre diplôme et vos progrès peuvent être transférés avec vous.¹

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Emplacement réservé

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions