Bringing a machine learning model into the real world involves a lot more than just modeling. This Specialization will teach you how to navigate various deployment scenarios and use data more effectively to train your model.
Browser-based Models with TensorFlow.js
Ce cours fait partie de Spécialisation TensorFlow: Data and Deployment
Instructeur : Laurence Moroney
48 616 déjà inscrits
(1,004 avis)
Expérience recommandée
Ce que vous apprendrez
Train and run inference in a browser
Handle data in a browser
Build an object classification and recognition model using a webcam
Compétences que vous acquerrez
- Catégorie : Tensorflow
- Catégorie : Convolutional Neural Network
- Catégorie : Object Detection
- Catégorie : Machine Learning
- Catégorie : TensorFlow.js
Détails à connaître
Ajouter à votre profil LinkedIn
5 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 4 modules dans ce cours
Welcome to Browser-based Models with TensorFlow.js, the first course of the TensorFlow for Data and Deployment Specialization. In this first course, we’re going to look at how to train machine learning models in the browser and how to use them to perform inference using JavaScript. This will allow you to use machine learning directly in the browser as well as on backend servers like Node.js. In the first week of the course, we are going to build some basic models using JavaScript and we'll execute them in simple web pages.
Inclus
11 vidéos9 lectures2 devoirs1 devoir de programmation1 élément d'application
This week we'll look at Computer Vision problems, including some of the unique considerations when using JavaScript, such as handling thousands of images for training. By the end of this module you will know how to build a site that lets you draw in the browser and recognizes your handwritten digits!
Inclus
8 vidéos6 lectures1 devoir1 devoir de programmation
This week we'll see how to take models that have been created with TensorFlow in Python and convert them to JSON format so that they can run in the browser using Javascript. We will start by looking at two models that have already been pre-converted. One of them is going to be a toxicity classifier, which uses NLP to determine if a phrase is toxic in a number of categories; the other one is Mobilenet which can be used to detect content in images. By the end of this module, you will train a model in Python yourself and convert it to JSON format using the tensorflow.js converter.
Inclus
12 vidéos7 lectures1 devoir1 devoir de programmation1 laboratoire non noté
One final work type that you'll need when creating Machine Learned applications in the browser is to understand how transfer learning works. This week you'll build a complete web site that uses TensorFlow.js, capturing data from the web cam, and re-training mobilenet to recognize Rock, Paper and Scissors gestures.
Inclus
11 vidéos5 lectures1 devoir1 devoir de programmation
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Software Development
Google Cloud
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Avis des étudiants
Affichage de 3 sur 1004
1 004 avis
- 5 stars
82,18 %
- 4 stars
13,73 %
- 3 stars
2,58 %
- 2 stars
0,69 %
- 1 star
0,79 %
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.