Welcome to the fourth course in the Building Cloud Computing Solutions at Scale Specialization! In this course, you will build upon the Cloud computing and data engineering concepts introduced in the first three courses to apply Machine Learning Engineering to real-world projects. First, you will develop Machine Learning Engineering applications and use software development best practices to create Machine Learning Engineering applications. Then, you will learn to use AutoML to solve problems more efficiently than traditional machine learning approaches alone. Finally, you will dive into emerging topics in Machine Learning including MLOps, Edge Machine Learning and AI APIs.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Cloud Machine Learning Engineering and MLOps
Ce cours fait partie de Spécialisation Building Cloud Computing Solutions at Scale
Instructeur : Noah Gift
7 981 déjà inscrits
Inclus avec
(77 avis)
Expérience recommandée
Détails à connaître
Ajouter à votre profil LinkedIn
3 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 3 modules dans ce cours
This week, you will learn about the methodologies involved in Machine Learning Engineering. By the end of the week, you will be able to develop Machine Learning Engineering applications and use software development best practices to create Machine Learning Engineering applications.
Inclus
15 vidéos5 lectures1 devoir3 sujets de discussion1 laboratoire non noté
This week, you will learn about AutoML and how to use it to build efficient Machine Learning solutions with little to no code. These technologies include Ludwig, Google AutoML, Apple Create ML and Azure Machine Learning Studio. You will apply these solutions by using both open source and Cloud AutoML technology.
Inclus
21 vidéos2 lectures1 devoir3 sujets de discussion
This week, you will learn MLOps strategies and best practices in designing Cloud solutions. Then, you will explore Edge Machine Learning and how to use AI APIs. You will apply these strategies to build a low code or no code Cloud solution that performs Natural Language Processing or Computer Vision.
Inclus
22 vidéos3 lectures1 devoir4 sujets de discussion2 laboratoires non notés
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Cloud Computing
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Avis des étudiants
Affichage de 3 sur 77
77 avis
- 5 stars
66,23 %
- 4 stars
18,18 %
- 3 stars
10,38 %
- 2 stars
5,19 %
- 1 star
0 %
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.