The primary objective of this course is to offer students an opportunity to learn how to use visualization tools and techniques for data exploration, knowledge discovery, data storytelling, and decision making in engineering, healthcare operations, manufacturing, and related applications. This course covers basics of data mining and visualization, and Python. It also introduces students to static visualization charts and techniques that reveal information, patterns, interactions.
Compétences que vous acquerrez
- Catégorie : NumPy
Détails à connaître
Ajouter à votre profil LinkedIn
14 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 4 modules dans ce cours
In this module, we will delve into the fundamental aspects of data, exploring its definition, significance, and the transformative journey from raw information to actionable insights. Through a series of engaging videos, we will unravel the mysteries of structured and unstructured data, unveiling their unique characteristics and applications. As we progress, the module unfolds the intricate steps of the data workflow, guiding through the pivotal stages of framing objectives, preparing data, analysis, interpretation, and effective communication of findings. Additionally, our exploration extends to the vast landscape of Big Data, unraveling its complexities through the lens of the Five Vs: Volume, Velocity, Variety, Veracity, and Value. By the end of this module, We will not only have a comprehensive understanding of the foundational concepts of data but also possess the essential skills to navigate the data-driven landscapes of today's digital era. Get ready to unlock the power of data and discover its profound impact on our world!
Inclus
2 vidéos6 lectures4 devoirs2 sujets de discussion
In this module, we will dive into the world of data analytics. We'll learn how to find the right data for data analysis, considering factors like relevance and timeliness. Then, we'll explore the crucial step of preprocessing, where we’ll learn to clean and organize raw data effectively. From handling missing values to spotting outliers, we'll pick up essential skills to ensure the analysis is accurate and reliable. By the end of this module, we'll be all set to confidently select, process, and analyze data like a pro. Let's get started!
Inclus
2 vidéos2 lectures4 devoirs1 sujet de discussion
In this module, we'll explore how data visualization turns complex data into engaging stories. Building on our understanding of data's significance, we'll discover how visualization simplifies information and connects with diverse audiences. We’ll delve into creating various visualizations, from statistical plots to geographical graphs. By grasping different statistical graphs and their applications, you'll enhance your skills in sharing meaningful insights. Get ready to unlock the potential of visualization and enhance your ability to tell compelling data stories. Let's dive into this visually enlightening journey!
Inclus
1 vidéo4 lectures3 devoirs1 sujet de discussion
In this module, we'll delve into the fundamentals of Python coding. We'll explore key concepts such as variables, data types, and structures — crucial components in creating robust code. Throughout your Python learning journey, you'll acquire the skill of decision-making through if-else statements, navigate data using loops, and enhance your code with custom functions. Whether you're a coding novice or have some prior knowledge, this course ensures hands-on, practical experience. Let's explore, learn, and become experts in the key principles of Python programming. Get ready to bring your coding ideas to life!
Inclus
2 vidéos9 lectures3 devoirs1 devoir de programmation1 sujet de discussion
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Data Analysis
University of Pennsylvania
Coursera Project Network
Johns Hopkins University
Préparer un diplôme
Ce site cours fait partie du (des) programme(s) diplômant(s) suivant(s) proposé(s) par Northeastern University . Si vous êtes admis et que vous vous inscrivez, les cours que vous avez suivis peuvent compter pour l'apprentissage de votre diplôme et vos progrès peuvent être transférés avec vous.¹
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.