This course will help prepare students for developing code that can process large amounts of data in parallel on Graphics Processing Units (GPUs). It will learn on how to implement software that can solve complex problems with the leading consumer to enterprise-grade GPUs available using Nvidia CUDA. They will focus on the hardware and software capabilities, including the use of 100s to 1000s of threads and various forms of memory.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Introduction to Parallel Programming with CUDA
Ce cours fait partie de Spécialisation GPU Programming
Instructeur : Chancellor Thomas Pascale
6 211 déjà inscrits
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Students will learn how to utilize the CUDA framework to write C/C++ software that runs on CPUs and Nvidia GPUs.
Students will transform sequential CPU algorithms and programs into CUDA kernels that execute 100s to 1000s of times simultaneously on GPU hardware.
Compétences que vous acquerrez
- Catégorie : Cuda
- Catégorie : Algorithms
- Catégorie : GPU
- Catégorie : C/C++
- Catégorie : Nvidia
Détails à connaître
Ajouter à votre profil LinkedIn
5 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 5 modules dans ce cours
The purpose of this module is for students to understand how the course will be run, topics, how they will be assessed, and expectations.
Inclus
3 vidéos4 lectures1 devoir de programmation1 sujet de discussion1 laboratoire non noté
The single most important concept for using GPUs to solve complex and large-scale problems, is management of threads. CUDA provides two- and three-dimensional logical abstractions of threads, blocks and grids. Students will develop programs that utilize threads, blocks, and grids to process large 2 to 3-dimensional data sets.
Inclus
8 vidéos1 lecture2 devoirs2 devoirs de programmation1 laboratoire non noté
To manage the access and modification of data in physical memory effectively, students will need to load data into CPU (host) and GPU (global) general-purpose memory. Students will create software that allocates host memory and transfers it into global memory for use by threads. Students will also learn the capabilities and speeds of these types of memories.
Inclus
8 vidéos1 devoir1 devoir de programmation1 sujet de discussion2 laboratoires non notés
To improve performance in GPU software, students will need to utilized mutable (shared) and static (constant) memory. They will use them to apply masks to all items of a data set, to manage the communication between threads, and use for caching in complex programs.
Inclus
6 vidéos1 devoir1 devoir de programmation1 sujet de discussion1 laboratoire non noté
In this module, students will learn the benefits and constraints of GPUs most hyper-localized memory, registers. While using this type of memory will be natural for students, gaining the largest performance boost from it, like all forms of memory, will require thoughtful design of software. Students will develop implementations of algorithms using each type of memory and generate performance analysis.
Inclus
5 vidéos1 devoir1 devoir de programmation1 sujet de discussion1 laboratoire non noté
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Software Development
University of Colorado Boulder
University of Colorado Boulder
University of Colorado Boulder
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Yes, but for grading purposes you will still need to upload any software artifacts (source code, header files, etc.) into the Coursera lab environment.
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.