Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.

Edureka

Machine Learning and NLP Basics

Edureka

Instructeur : Edureka

1 699 déjà inscrits

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
3.7

(12 avis)

niveau Débutant

Expérience recommandée

19 heures pour terminer
3 semaines à 6 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
3.7

(12 avis)

niveau Débutant

Expérience recommandée

19 heures pour terminer
3 semaines à 6 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Ce que vous apprendrez

  • Master ML and deep learning, and apply NLP for advanced text analysis and classification.

Compétences que vous acquerrez

  • Catégorie : Tensorflow
  • Catégorie : Machine learning
  • Catégorie : RNN
  • Catégorie : CNN
  • Catégorie : Artificial Intelligence

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Évaluations

15 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Emplacement réservé

Élaborez votre expertise du sujet

Ce cours fait partie de la Spécialisation Learn Generative AI with LLMs
Lorsque vous vous inscrivez à ce cours, vous êtes également inscrit(e) à cette Spécialisation.
  • Apprenez de nouveaux concepts auprès d'experts du secteur
  • Acquérez une compréhension de base d'un sujet ou d'un outil
  • Développez des compétences professionnelles avec des projets pratiques
  • Obtenez un certificat professionnel partageable
Emplacement réservé
Emplacement réservé

Obtenez un certificat professionnel

Ajoutez cette qualification à votre profil LinkedIn ou à votre CV

Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Emplacement réservé

Il y a 4 modules dans ce cours

This module of our course offers a comprehensive dive into the fundamentals, types, and applications of Machine Learning (ML), a pivotal aspect of artificial intelligence. It is meticulously crafted to transition learners from the basics of AI and predictive models in ML to a deeper understanding of different ML types—such as supervised, unsupervised, semi-supervised, and reinforcement learning. It further explores key concepts in classification and regression, including decision trees, random forests, and model optimization techniques. This module serves as both a foundational and an advanced exploration, catering to a broad spectrum of learners aiming to master machine learning.

Inclus

28 vidéos4 lectures4 devoirs1 sujet de discussion

This module provides a comprehensive exploration of deep neural networks, covering fundamental concepts, practical implementations, and advanced techniques. From understanding the basics of deep learning and its comparison with human brain functioning to delving into specific architectures like Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) with Long Short-Term Memory (LSTM), this module equips learners with the knowledge and skills needed to design, train, and optimize deep learning models for various tasks, including image classification and sequence prediction

Inclus

70 vidéos9 lectures6 devoirs5 sujets de discussion

This Module introduces the fundamentals of text mining and analysis. It covers various techniques for extracting, cleaning, and preprocessing text data, including tokenization, stemming, lemmatization, and named entity recognition. Additionally, the module explores methods for analyzing sentence structure, such as syntax trees and chunking, along with text classification techniques using bag-of-words, count vectorizers, and multinomial naive Bayes classifiers. Through practical assignments and discussions, learners gain insights into the applications of text mining across different domains and the essential tools and processes involved in working with textual data.

Inclus

39 vidéos4 lectures4 devoirs3 sujets de discussion

This module is the final stage of the course, offering learners a comprehensive review and evaluation of the knowledge and skills acquired throughout the modules. Throughout the module learners engage in various activities to solidify their learning and assess their understanding of the course material. These activities include completing a practice project that applies learned concepts to real-world scenarios, undertaking a graded assignment to evaluate proficiency, and potentially viewing a course completion video summarizing key takeaways and achievements.

Inclus

1 vidéo1 lecture1 devoir

Instructeur

Edureka
Edureka
47 Cours41 960 apprenants

Offert par

Edureka

Recommandé si vous êtes intéressé(e) par Machine Learning

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Emplacement réservé

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions