This capstone project will give you an opportunity to apply what we have covered in the Foundations of Marketing Analytics specialization. By the end of this capstone project, you will have conducted exploratory data analysis, examined pairwise relationships among different variables, and developed and tested a predictive model to solve a marketing analytics problem. It is highly recommended that you complete all courses within the Foundations of Marketing Analytics specialization before starting the capstone course.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Marketing Analytics Capstone Project
Ce cours fait partie de Spécialisation Foundations of Marketing Analytics
Instructeur : David Schweidel
3 318 déjà inscrits
Inclus avec
(29 avis)
Détails à connaître
Ajouter à votre profil LinkedIn
4 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 6 modules dans ce cours
This module will define the goals and activities for the marketing analytics capstone project.
Inclus
2 lectures1 sujet de discussion
In this module, we will begin to examine individual variables and their relationship to the status of the loan. Note, this module includes review items from previous courses in the specialization. This content is not required, but recommended as content to revisit.
Inclus
9 vidéos2 lectures1 évaluation par les pairs1 sujet de discussion
While there are many ways to build a classification model, we will focus on using logistic regression, a common tool for marketing problems in which the dependent variable is binary. We will begin by choosing a single predictor variable and then determine which other variables need to be added to our analysis. In this module, we will focus on developing alternative models that all have a single predictor.
Inclus
3 lectures1 devoir2 sujets de discussion
In the previous module, we estimated a model linking home ownership to whether or not a loan is considered risky. In this module, we will begin by assessing the accuracy of this model relative to a naïve model. We will then use this spreadsheet as a means of assessing how well the model performs when different predictors are used.
Inclus
1 lecture1 devoir1 évaluation par les pairs
In this module, we will generalize the logistic regression tool that was developed to include multiple predictor variables. We will also consider an alternative means of evaluating the performance of the model.
Inclus
2 lectures2 devoirs1 évaluation par les pairs2 sujets de discussion
This module provides a final congratulatory video from Professor David Schweidel.
Inclus
1 vidéo
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Marketing
O.P. Jindal Global University
University of California, Santa Cruz
University of Illinois Urbana-Champaign
Johns Hopkins University
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Avis des étudiants
Affichage de 3 sur 29
29 avis
- 5 stars
79,31 %
- 4 stars
6,89 %
- 3 stars
3,44 %
- 2 stars
3,44 %
- 1 star
6,89 %
Révisé le 23 avr. 2020
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.